從編譯器我們能學到什麼
A. 編譯器和解釋器的主要區別是什麼他們相對於對方各自的優點
解釋器是解釋執行的源代碼,編譯器是將源代碼編譯成目標代碼
他們最大的區別是程序運行時需要解釋器邊解釋邊執行,而編譯器則在運行時是完全不需要的
解釋器的優點是比較容易讓用戶實現自己跨平台的代碼,比如java,php等,同一套代碼可以在幾乎所有的操作系統上執行,而無需根據操作系統做修改;
編譯器的目的就是生成目標代碼再由連接器生成可執行的機器碼,這樣的話需要根據不同的操作系統編制代碼,雖然有像Qt這樣的源代碼級跨平台的編程工具庫,但在不同的平台上仍然需要重新編譯連接成可執行文件,但其執行效率要遠遠高於解釋運行的程序。
編譯器是把源程序的每一條語句都編譯成機器語言,並保存成二進制文件,這樣運行時計算機可以直接以機器語言來運行此程序,速度很快;
而解釋器則是只在執行程序時,才一條一條的解釋成機器語言給計算機來執行,所以運行速度是不如編譯後的程序運行的快的.
這是因為計算機不能直接認識並執行我們寫的語句,它只能認識機器語言(是二進制的形式)
B. 為什麼要學習編譯原理(轉)
大學課程為什麼要開設編譯原理呢?這門課程關注的是編譯器方面的產生原理和技術問題,似乎和計算機的基礎領域不沾邊,可是編譯原理卻一直作為大學本科的必修課程,同時也成為了研究生入學考試的必考內容。編譯原理及技術從本質上來講就是一個演算法問題而已,當然由於這個問題十分復雜,其解決演算法也相對復雜。我們學的數據結構與演算法分析也是講演算法的,不過講的基礎演算法,換句話說講的是演算法導論,而編譯原理這門課程講的就是比較專註解決一種的演算法了。在20世紀50年代,編譯器的編寫一直被認為是十分困難的事情,第一Fortran的編譯器據說花了18年的時間才完成。在人們嘗試編寫編譯器的同時,誕生了許多跟編譯相關的理論和技術,而這些理論和技術比一個實際的編譯器本身價值更大。就猶如數學家們在解決著名的哥德巴赫猜想一樣,雖然沒有最終解決問題,但是其間誕生不少名著的相關數論。 推薦參考書 雖然編譯理論發展到今天,已經有了比較成熟的部分,但是作為一個大學生來說,要自己寫出一個像TurbocC,Java那樣的編譯器來說還是太難了。不僅寫編譯器困難,學習悶數編譯原理這門課程也比較困難。 第一本書的原名叫《CompilersPrinciples,Techniques,andTools》,另外一個響亮的名字就是龍書。原因是這本書的封面上有條紅色的龍,也因為獗臼樵詒嘁朐?砘?嘴域確實?忻?所以很多國外的學者都直接取名為龍書。最近機械工業出版社已經出版了此書的中文版,名字就叫《編譯原理》。該書出的比較早,大概是在85或86年編寫完成的,作者之一還是著名的貝爾實驗室的科學家。裡面講解的核心編譯原理至今都沒有變過,所以一直到今天,它的價值都非凡。這本書最大的特點就是一開始就通過一個實際的小例子,把編譯原理的大致內容羅列出來,讓很多編譯螞罩首原理的初學者很快心裡有了個底,也知道為什麼會有這些理論,怎麼運用這些理論。而這一點是我感覺國內的教材缺乏的東西,所以國內的教材都不是寫給願意自學的讀者,總之讓人看了半天,卻不知道裡面的東西有什麼用。 第二本書的原名叫《ModernCompilerDesign》,中文名字叫做《現代編譯程序設計》。該書由人民郵電出版社所出。此書比較關注的是編譯原理的實踐,書中給出了不少的實際程序代碼,還有很多實際的編譯技術問題等等。此書另外一個特點就是其現代而字。在傳統的編譯原理教材中,你是不可能看到如同Java中的垃圾回收等演算法的。因為Java這樣的解釋執行語言是在近幾年才流行起來的東西。如果你想深入學習編譯原理的理論知識,那麼你肯定得看前面那本龍書,如果你想自己動手做一個先進的編譯器,那麼你得看這本《現代編譯程序設計》。 第三本書就是很多國內的編譯原理學者都推薦的那本《編譯原理及實踐》。或許是這本書引入國內比較早吧,我記得我是在高中就買了這本書,不過也是在前段時間才把整本書看完。此書作為入門教程也的確是個不錯的選擇。書中給出的編譯原理講解也相當細致,雖然不如前面的龍書那麼深入,但是很多地方都是點到為止,作為大學本科教學已經是十分深入了。該書的特點就是注重實踐,不過感覺還不如前面那本《現代編譯程序設計》的實踐味道更重。此書的重點還是在原理上的實踐,而非前面那本那樣的技術實踐。《編譯原理及實踐》在講解編譯原理的各個部分的同時,也在逐步實踐一個現代的編譯器TinyC.等你把整本書看完,差不多自己也可以寫一個TinyC了。作者還對Lex和Yacc這兩個常用的編譯相關的工具進行了很詳細的說明,這一點也是很難在國內的教材中看到的。 推薦了這三本教材,都有英文版和中文版的。很多英文好的同學只喜歡看原版的書,不我的感覺是這三本書的翻譯都很不錯,沒有必要特別去買英文版的。理解理論的實質比理解表面的文字更為重要。 編譯原理的實質 幾乎每本編譯原理的教材都是分成詞法分析,語法分析(LL演算法,遞歸下降演算法,LR演算法),語義分析,運行時環境,中間悶悉代碼,代碼生成,代碼優化這些部分。其實現在很多編譯原理的教材都是按照85,86出版的那本龍書來安排教學內容的,所以那本龍書的內容格式幾乎成了現在編譯原理教材的定式,包括國內的教材也是如此。一般來說,大學裡面的本科教學是不可能把上面的所有部分都認真講完的,而是比較偏重於前面幾個部分。像代碼優化那部分東西,就像個無底洞一樣,如果要認真講,就是單獨開一個學期的課也不可能講得清楚。所以,一般對於本科生,對詞法分析和語法分析掌握要求就相對要高一點了。 詞法分析相對來說比較簡單。可能是詞法分析程序本身實現起來很簡單吧,很多沒有學過編譯原理的人也同樣可以寫出各種各樣的詞法分析程序。不過編譯原理在講解詞法分析的時候,重點把正則表達式和自動機原理加了進來,然後以一種十分標準的方式來講解詞法分析程序的產生。這樣的做法道理很明顯,就是要讓詞法分析從程序上升到理論的地步。 語法分析部分就比較麻煩一點了。現在一般有兩種語法分析演算法,LL自頂向下演算法和LR自底向上演算法。LL演算法還好說,到了LR演算法的時候,困難就來了。很多自學編譯原理的都是遇到LR演算法的理解成問題後就放棄了自學。其實這些東西都是只要大家理解就可以了,又不是像詞法分析那樣非得自己寫出來才算真正的會。像LR演算法的語法分析器,一般都是用工具Yacc來生成,實踐中完全沒有比較自己來實現。對於LL演算法中特殊的遞歸下降演算法,因為其實踐十分簡單,那麼就應該要求每個學生都能自己寫。當然,現在也有不少好的LL演算法的語法分析器,不過要是換在非C平台,比如Java,Delphi,你不能運用YACC工具了,那麼你就只有自己來寫語法分析器。 等學到詞法分析和語法分析時候,你可能會出現這樣的疑問:詞法分析和語法分析到底有什麼?就從編譯器的角度來講,編譯器需要把程序員寫的源程序轉換成一種方便處理的數據結構(抽象語法樹或語法樹),那麼這個轉換的過程就是通過詞法分析和語法分析的。其實詞法分析並非一開始就被列入編譯器的必備部分,只是我們為了簡化語法分析的過程,就把詞法分析這種繁瑣的工作單獨提取出來,就成了現在的詞法分析部分。除了編譯器部分,在其它地方,詞法分析和語法分析也是有用的。比如我們在DOS,Unix,Linux下輸入命令的時候,程序如何分析你輸入的命令形式,這也是簡單的應用。總之,這兩部分的工作就是把不規則的文本信息轉換成一種比較好分析好處理的數據結構。那麼為什麼編譯原理的教程都最終把要分析的源分析轉換成樹這種數據結構呢?數據結構中有Stack,Line,List這么多數據結構,各自都有各自的特點。但是Tree這種結構有很強的遞歸性,也就是說我們可以把Tree的任何結點Node提取出來後,它依舊是一顆完整的Tree。這一點符合我們現在編譯原理分析的形式語言,比如我們在函數裡面使用函樹,循環中使用循環,條件中使用條件等等,那麼就可以很直觀地表示在Tree這種數據結構上。同樣,我們在執行形式語言的程序的時候也是如此的遞歸性。在編譯原理後面的代碼生成的部分,就會介紹一種堆棧式的中間代碼,我們可以根據分析出來的抽象語法樹,很容易,很機械地運用遞歸遍歷抽象語法樹就可以生成這種指令代碼。而這種代碼其實也被廣泛運用在其它的解釋型語言中。像現在流行的Java,.NET,其底層的位元組碼bytecode,可以說就是這中基於堆棧的指令代碼的。 關於語義分析,語法制導翻譯,類型檢查等等部分,其實都是一種完善前面得到的抽象語法樹的過程。比如說,我們寫C語言程序的時候,都知道,如果把一個浮點數直接賦值給一個整數,就會出現類型不匹配,那麼C語言的編譯器是怎麼知道的呢?就是通過這一步的類型檢查。像C++語言這中支持多態函數的語言,這部分要處理的問題就更多更復雜了。大部編譯原理的教材在這部分都是講解一些比較好的處理策略而已。因為新的問題總是在發生,舊的辦法不見得足夠解決。 本來說,作為一個編譯器,起作用的部分就是用戶輸入的源程序到最終的代碼生成。但是在講解最終代碼生成的時候,又不得不講解機器運行環境等內容。因為如果你不知道機器是怎麼執行最終代碼的,那麼你當然無法知道如何生成合適的最終代碼。這部分內容我自我感覺其意義甚至超過了編譯原理本身。因為它會把一個計算機的程序的運行過程都通通排在你面前,你將來可能不會從事編譯器的開發工作,但是只要是和計算機軟體開發相關的領域,都會涉及到程序的執行過程。運行時環境的講解會讓你更清楚一個計算機程序是怎麼存儲,怎麼裝載,怎麼執行的。關於部分的內容,我強烈建議大家看看龍書上的講解,作者從最基本的存儲組織,存儲分配策略,非局部名字的訪問,參數傳遞,符號表到動態存儲分配(malloc,new)都作了十分詳細的說明。這些東西都是我們編寫平常程序的時候經常要做的事情,但是我們卻少去探求其內部是如何完成。 關於中間代碼生成,代碼生成,代碼優化部分的內容就實在不好說了。國內很多教材到了這部分都會很簡單地走馬觀花講過去,學生聽了也只是作為了解,不知道如何運用。不過這部分內容的東西如果要認真講,單獨開一學期的課程都講不完。在《編譯原理及實踐》的書上,對於這部分的講解就恰到好處。作者主要講解的還是一種以堆棧為基礎的指令代碼,十分通俗易懂,讓人看了後,很容易模仿,自己下來後就可以寫自己的代碼生成。當然,對於其它代碼生成技術,代碼優化技術的講解就十分簡單了。如果要仔細研究代碼生成技術,其實另外還有本叫做《》,那本書現在由機械工業出版社引進的,十分厚重,而且是英文原版。不過這本書我沒有把它列為推薦書給大家,畢竟能把龍書的內容搞清楚,在中國已經就算很不錯的高手了,到那個時候再看這本《》也不遲。代碼優化部分在大學本科教學中還是一個不太重要的部分,就是算是實踐過程中,相信大家也不太運用得到。畢竟,自己做的編譯器能正確生成執行代碼已經很不錯了,還談什麼優化呢? 編譯原理的課程畢竟還只是講解原理的課程,不是專門的編譯技術課程。這兩門課程是有很大的區別的。編譯技術更關注實際的編寫編譯器過程中運用到的技術,而原理的課
C. 編譯器是什麼
簡單講,編譯器就是將「一種語言(通常為高級語言)」翻譯為「另一種語言(通常為低級語言)」的程序。一個現代編譯器的主要工作流程:源代碼 (source code) → 預處理器 (preprocessor) → 編譯器 (compiler) → 目標代碼 (object code) → 鏈接器 (Linker) → 可執行程序 (executables)
高級計算機語言便於人編寫,閱讀交流,維護。機器語言是計算機能直接解讀、運行的。編譯器將匯編或高級計算機語言源程序(Source program)作為輸入,翻譯成目標語言(Target language)機器代碼的等價程序。源代碼一般為高級語言 (High-level language), 如Pascal、C、C++、Java、漢語編程等或匯編語言,而目標則是機器語言的目標代碼(Object code),有時也稱作機器代碼(Machine code)。
對於C#、VB等高級語言而言,此時編譯器完成的功能是把源碼(SourceCode)編譯成通用中間語言(MSIL/CIL)的位元組碼(ByteCode)。最後運行的時候通過通用語言運行庫的轉換,編程最終可以被CPU直接計算的機器碼(NativeCode)。
編譯是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器語言)的翻譯過程。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址, 以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的EXE,
所以我們電腦上的文件都是經過編譯後的文件。
D. 編譯器是什麼意思,是做什麼的
編譯器
編譯器是一種特殊的程序,它可以把以特定編程語言寫成的程序變為機器可以運行的機器碼。我們把一個程序寫好,這時我們利用的環境是文本編輯器。這時我程序把程序稱為源程序。在此以後程序員可以運行相應的編譯器,通過指定需要編譯的文件的名稱就可以把相應的源文件(通過一個復雜的過程)轉化為機器碼了。
下面我們看看它是如何工作的。首先編譯器進行語法分析,也就是要把那些字元串分離出來。然後進行語義分析,就是把各個由語法分析分析出的語法單元的意義搞清楚。最後生成的是目標文件,我們也稱為obj文件。再經過鏈接器的鏈接就可以生成最後的可執行代碼了。有些時候我們需要把多個文件產生的目標文件進行鏈接,產生最後的代碼。我們把一過程稱為交叉鏈接。
有一個稱為LCC的編譯器,還挺不錯的;還有一個用於分析其規則的小工具;
E. 電腦編程的基礎知識——編譯器和連接器
我從沒見過(不過應該有)任何一本C++教材有講過何謂編譯器(Compiler)及連接器(Linker)(倒是在很老的C教材中見過),現在都通過一個類似VC這樣的編程環境隱藏了大量東西,將這些封裝起來。在此,對它們的理解是非常重要的,本系列後面將大量運用到這兩個詞彙,其決定了能否理解如聲明、定義、外部變數、頭文件等非常重要的關鍵。
前面已經說明了電腦編程就是一個「翻譯」過程,要把用戶的程序翻譯成CPU指令,其實也就是機器代碼。所謂的機器代碼就是用CPU指令書寫的程序,被稱作低級語言。而程序員的工作就是編寫出機器代碼。由於機器代碼完全是一些數字組成(CPU感知的一切都是數字,即使是指令,也只是1代表加法、2代表減法這一類的數字和工作的映射),人要記住1是代表加法、2是代表減法將比較困難,並且還要記住第3塊內存中放的是圓周率,而第4塊內存中放的是有效位數。所以發明了匯編語言,用一些符號表示加法而不再用1了,如用ADD表示加法等。
由於使用了匯編語言,人更容易記住了,但是電腦無法理解(其只知道1是加頌隱法,不知道ADD是加法,因為電腦只能看見數字),所以必須有個東西將匯編代碼翻譯成機器代碼,也就是所謂的編譯器。即編譯器是將一種語言翻譯成另一種語言的程序。即使使用了匯編語言,但由於其幾乎只是將CPU指令中的數字映射成符號以幫助記憶而已,還是使用的空跡電腦的思考方式進行思考的,不夠接近人類的思考習慣,故而出現了紛繁復雜的各種電腦編程語言,如:PASCAL、BASIC、C等,其被稱作高級語言,因為比較接近人的思考模式(尤其C++的類的概念的推出),而匯編語言則被稱作低級語言(C曾被稱作高級的低級語言),因為它們不是很符合人類的思考模式,人類書野虧廳寫起來比較困難。由於CPU同樣不認識這些PASCAL、BASIC等語言定義的符號,所以也同樣必須有一個編譯器把這些語言編寫的代碼轉成機器代碼。對於這里將要講到的C++語言,則是C++語言編譯器(以後的編譯器均指C++語言編譯器)。
因此,這里所謂的編譯器就是將我們書寫的C++源代碼轉換成機器代碼。由於編譯器執行一個轉換過程,所以其可以對我們編寫的代碼進行一些優化,也就是說其相當於是一個CPU指令程序員,將我們提供的程序翻譯成機器代碼,不過它的工作要簡單一些了,因為從人類的思考方式轉成電腦的思考方式這一過程已經由程序員完成了,而編譯器只是進行翻譯罷了(最多進行一些優化)。
還有一種編譯器被稱作翻譯器(Translator),其和編譯器的區別就是其是動態的而編譯器是靜態的。如前面的BASIC的編譯器在早期版本就被稱為翻譯器,因為其是在運行時期即時進行翻譯工作的,而不像編譯器一次性將所有代碼翻成機器代碼。對於這里的「動態」、「靜態」和「運行時期」等名詞,不用刻意去理解它,隨著後續文章的閱讀就會了解了。
編譯器把編譯後(即翻譯好的)的代碼以一定格式(對於VC,就是COFF通用對象文件格式,擴展名為.obj)存放在文件中,然後再由連接器將編譯好的機器代碼按一定格式在Windows操作系統下就是Portable Executable File Format--PE文件格式)存儲在文件中,以便以後操作系統執行程序時能按照那個格式找到應該執行的第一條指令或其他東西,如資源等。至於為什麼中間還要加一個連接器以及其它細節,在後續文章中將會進一步說明。
F. 如果不發明一種新語言,那學編譯原理有什麼用
編譯原理是計算機科學與技術中一個非常成熟的分支,非常完美地將原理與技術結合了起來,對於理解計算機的本質非常有幫助
編譯原理的很多設計思想可以在你設計的程序中運用
比如你想寫個程序對於某個文本作詞法分析和語法分析的處理,那麼編譯原理的知識完全可以幫助你來完成它
又或者你也可能寫個能自動生成菜單或者界面的程序,你需要自定義一個非常簡單的腳本語言並解析它,編譯原理也可以幫助你做到這一點
總之,編譯原理應用的領域十分廣泛,不要以為學編譯原理就僅僅是用來做編譯器的
另外,編譯原理包含了很多巧妙的設計構思,作為一名CS的學生,當然是很有必要來學習它的
G. 繼續學習編譯原理的意義是什麼
對於學習一個什麼的意義,就像跟人生有什麼意義一樣。這是一種很空泛的東西啊,非常的主觀。你喜歡這樣東西,你就覺得他做起來有意義,如果你不喜歡的話,那你就覺得做起來沒有意義了。如果你的專業是學的編譯原理。那你也對他非常的有興趣,那麼你繼續學的意義當然就是因為你喜愛,所以說你繼續,這就是意義啊。
所以說就學習的東西而言,你說的。所以說。就學習的東西而言,你學的越多,對你自己的好處就越多。這可不就是學習的意義了嗎?讓你自己懂得了更多的知識,這份支持還可以給你帶來很多的經濟效益。這是多麼美好的一件事情啊。
H. 我就想問一句,為什麼要學編譯原理
編譯原理內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。主要是講怎麼做程序的編譯器。需要數學基礎和很強的邏輯思維。編譯原理里的字元閉包是指有限循環。關於閉包這些名詞解釋,你們的課程應該有離散數學吧?會有對這些概念的解釋。編譯原理這書啊。得花老大精力去看了。每一行都會是至關重要的。如果你漏看了哪一節,或許接下來看到的新字母就不知道是什麼意思了。所以要反復看,反復用邏輯思維推敲。做習題,習題類型也就幾種,做熟了就很簡單
I. java編譯器的作用是什麼
java編譯器的作用就是「編譯」,即將java源代碼編譯成中間代碼位元組碼文件。
編譯時,編譯器(java.exe)首先讀入 java 源代碼,然後進行語法檢查,如果出現問題就終止編譯。語法檢查通過後,生成中間代碼即位元組碼。
位元組碼文件是一種和任何具體機器環境及操作系統環境無關的中間代碼,它是一種二進制文件,是Java源文件由Java編譯器編譯後生成的目標代碼文件。
編譯器編譯生成與平台無關的位元組碼文件後,提供給 JVM (Java虛擬機)執行。
J. 編譯器的工作原理
編譯 是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器語言)的翻譯過程。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。
典型的編譯器輸出是由包含入口點的名字和地址, 以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的EXE,
所以我們電腦上的文件都是經過編譯後的文件。