動態編程演算法
Ⅰ 動態規劃演算法的基本思想
動態規劃演算法與分治法類似,其基本思想也是將待求解問題分解成若干個子問題。
拓展資料:
動態規劃的實質是分治思想和解決冗餘,因此動態規劃是一種將問題實例分析為更小的、相似的子問題,並存儲子問題的解而避免計算重復的子問題,以解決最優化問題的演算法策略
動態規劃所針對的問題有一個顯著的特徵,即它對應的子問題樹中的子問題呈現大量的重復。動態規劃的關鍵在於,對於重復的子問題,只在第一次遇到時求解,並把答案保存起來,讓以後再遇到時直接引用,不必要重新求解。
Ⅱ Python之動態規劃演算法
動態規劃演算法中是將復雜問題遞歸分解為子問題,通過解決這皮拆些子問題來解決復雜問題。與遞歸演算法相比,動態編程減少了堆棧的使用,避免了重復的計算,效率得到顯著提升。
先來看一個簡單的例子,斐波那契數列.
斐波那契數列的定義如下。
斐波那契數列可以很容易地用遞歸演算法實現:
上述代碼,隨燃旁棗著n的增加,計算量呈指數級增長,演算法的時間復雜度是 。
採用動態規劃演算法,通過自下而上的計算數列的值,可以使演算法復雜度減小到 ,代碼如下。
下面我們再看一個復雜一些的例子。
這是小學奧數常見的硬幣問題: 已知有1分,2分,5分三種硬幣數量不限,用這些硬幣湊成為n分錢,那麼一共有多少種組合方法。
我們將硬幣的種類用列表 coins 定義;
將問題定義為一個二維數組 dp,dp[amt][j] 是使用 coins 中前 j+1 種硬幣( coins[0:j+1] )湊成總價amt的組合數。
例如: coins = [1,2,5]
dp[5][1] 就是使用前兩種硬幣 [1,2] 湊成總和為5的組合數。
對於所有的 dp[0][j] 來說,湊成總價為0的情況只有一種,就是所有的硬幣數量都為0。所以對於在有效范圍內任意的j,都有 dp[0][j] 為1。
對於 dp[amt][j] 的計算,也就是使用 coins[0:j+1] 硬幣總價amt的組合數,包含兩種情況計算:
1.當使用第j個硬幣時,有 dp[amt-coins[j]][j] 種情況,即amt減去第j個硬幣幣值,使用前j+1種硬幣的組合數;
2.當不使用第j個硬幣時,有 dp[amt][j-1] 種情況,即使用前j種硬幣湊成amt的組合數;
所以: dp[amt][j] = dp[amt - coins[j]][j]+dp[amt][j-1]
我們最終得到的結果是:dp[amount][-1]
上述分析省略了一些邊界情況。
有了上述的分析,代碼實現就比較簡單了。
動態規劃演算法代碼簡潔,執行效率高。但是與遞歸演算法相比,需要仔細考慮如何分解問題,動態規劃代碼與遞歸調用相比,較難理解。
我把遞歸演算法啟瞎實現的代碼也附在下面。有興趣的朋友可以比較一下兩種演算法的時間復雜度有多大差別。
上述代碼在Python 3.7運行通過。
Ⅲ 設計動態規劃演算法有哪些主要步驟
動態規劃演算法通常用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。動態規劃演算法與分治法類似,其基本思想也是將待求解問題分解成若干個子問題,先求解子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,適合於用動態規劃求解的問題,經分解得到子問題往往不是互相獨立的。若用分治法來解這類問題,則分解得到的子問題數目太多,有些子問題被重復計算了很多次。如果我們能夠保存已解決的子問題的答案,而在需要時再找出已求得的答案,這樣就可以避免大量的重復計算,節省時間。我們可以用一個表來記錄所有已解的子問題的答案。不管該子問題以後是否被用到,只要它被計算過,就將其結果填入表中。這就是動態規劃法的基本思路。具體的動態規劃演算法多種多樣,但它們具有相同的填表格式。
Ⅳ 動態規劃演算法的基本思想
動態規劃與其它演算法相比,大大減少了計算量,豐富了計算結果,不僅求出了當前狀態到目標狀態的最優值,而且同時求出了到中間狀態的最優值,這對於很多實際問題來說是很有用的。動態規劃相比一般演算法也存在一定缺點:空間占據過多,但對於空間需求量不大的題目來說,動態規劃無疑是最佳方法!
動態規劃與其它演算法相比,大大減少了計算量,豐富了計算結果,不僅求出了當前狀態到目標狀態的最優值,而且同時求出了到中間狀態的最優值,這對於很多實際問題來說是很有用的。動態規劃相比一般演算法也存在一定缺點:空間占據過多,但對於空間需求量不大的題目來說,動態規劃無疑是最佳方法!
動態規劃演算法和貪婪演算法都是構造最優解的常有方法。動態規劃演算法沒有一個固定的解題模式,技巧性很強。
動態規劃是運籌學的一個分支,是求解決策過程最優化的過程。20世紀50年代初,美國數學家貝爾曼等人在研究多階段決策過程的優化問題時,提出了著名的最優化原理,從而創立了動態規劃。