當前位置:首頁 » 編程軟體 » 編譯優化

編譯優化

發布時間: 2022-01-15 09:43:38

編譯器的編譯器優化

應用程序之所以復雜, 是由於它們具有處理多種問題以及相關數據集的能力。實際上, 一個復雜的應用程序就象許多不同功能的應用程序「 粘貼」 在一起。源文件中大部分復雜性來自於處理初始化和問題設置代碼。這些文件雖然通常占源文件的很大一部分, 具有很大難度, 但基本上不花費C PU 執行周期。
盡管存在上述情況, 大多數Makefile文件只有一套編譯器選項來編譯項目中所有的文件。因此, 標準的優化方法只是簡單地提升優化選項的強度, 一般從O 2 到O 3。這樣一來, 就需要投人大量 精力來調試, 以確定哪些文件不能被優化, 並為這些文件建立特殊的make規則。
一個更簡單但更有效的方法是通過一個性能分析器, 來運行最初的代碼, 為那些佔用了85 一95 % CPU 的源文件生成一個列表。通常情況下, 這些文件大約只佔所有文件的1%。如果開發人員立刻為每一個列表中的文件建立其各自的規則, 則會處於更靈活有效的位置。這樣一來改變優化只會引起一小部分文件被重新編譯。進而,由於時間不會浪費在優化不費時的函數上, 重編譯全部文件將會大大地加快。

⑵ gcc 編譯優化做了哪些事求解答

用過gcc的都應該知道編譯時候的-O選項吧。它就是負責編譯優化。下面列出它的說明: -O -O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function. With -O, the compiler tries to rece code size and execution time, without performing any optimizations that take a great deal of compilation time. -O turns on the following optimization flags: -fdefer-pop -fdelayed-branch -fguess-branch-probability -fcprop-registers -floop-optimize -fif-conversion -fif-conver- sion2 -ftree-ccp -ftree-dce -ftree-dominator-opts -ftree-dse -ftree-ter -ftree-lrs -ftree-sra -ftree-rename -ftree-fre -ftree-ch -funit-at-a-time -fmerge-constants -O also turns on -fomit-frame-pointer on machines where doing so does not interfere with debugging. -O doesn』t turn on -ftree-sra for the Ada compiler. This option must be explicitly speci- fied on the command line to be enabled for the Ada compiler. -O2 Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. The compiler does not perform loop unrolling or function inlining when you specify -O2. As compared to -O, this option increases both compilation time and the performance of the generated code. -O2 turns on all optimization flags specified by -O. It also turns on the following opti- mization flags: -fthread-jumps -fcrossjumping -foptimize-sibling-calls -fcse-follow-jumps -fcse-skip-blocks -fgcse -fgcse-lm -fexpensive-optimizations -fstrength-rece -fre- run-cse-after-loop -frerun-loop-opt -fcaller-saves -fpeephole2 -fschele-insns -fsched- ule-insns2 -fsched-interblock -fsched-spec -fregmove -fstrict-aliasing -fdelete-null-pointer-checks -freorder-blocks -freorder-functions -falign-functions -falign-jumps -falign-loops -falign-labels -ftree-vrp -ftree-pre Please note the warning under -fgcse about invoking -O2 on programs that use computed gotos. -O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on the -finline-functions, -funswitch-loops and -fgcse-after-reload options. -O0 Do not optimize. This is the default. -Os Optimize for size. -Os enables all -O2 optimizations that do not typically increase code size. It also performs further optimizations designed to rece code size. -Os disables the following optimization flags: -falign-functions -falign-jumps -falign-loops -falign-labels -freorder-blocks -freorder-blocks-and-partition -fprefetch-loop-arrays -ftree-vect-loop-version If you use multiple -O options, with or without level numbers, the last such option is the one that is effective. Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed---the one you typically will use. You can figure out the other form by either removing no- or adding it. The following options control specific optimizations. They are either activated by -O options or are related to ones that are. You can use the following flags in the rare cases when "fine-tuning" of optimizations to be performed is desired. -fno-default-inline Do not make member functions inline by default merely because they are defined inside the class scope (C++ only). Otherwise, when you specify -O, member functions defined inside class scope are compiled inline by default; i.e., you don』t need to add inline in front of the member function name. -fno-defer-pop Always pop the arguments to each function call as soon as that function returns. For machines which must pop arguments after a function call, the compiler normally lets argu- ments accumulate on the stack for several function calls and pops them all at once. Disabled at levels -O, -O2, -O3, -Os. -fforce-mem Force memory operands to be copied into registers before doing arithmetic on them. This proces better code by making all memory references potential common subexpressions. When they are not common subexpressions, instruction combination should eliminate the separate register-load. This option is now a nop and will be removed in 4.2. -fforce-addr Force memory address constants to be copied into registers before doing arithmetic on them. -fomit-frame-pointer Don』t keep the frame pointer in a register for functions that don』t need one. This avoids the instructions to save, set up and restore frame pointers; it also makes an extra regis- ter available in many functions. It also makes debugging impossible on some machines. On some machines, such as the VAX, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn』t exist. The machine-description macro "FRAME_POINTER_REQUIRED" controls whether a target machine supports this flag. Enabled at levels -O, -O2, -O3, -Os. -foptimize-sibling-calls Optimize sibling and tail recursive calls. Enabled at levels -O2, -O3, -Os. -fno-inline Don』t pay attention to the "inline" keyword. Normally this option is used to keep the com- piler from expanding any functions inline. Note that if you are not optimizing, no func- tions can be expanded inline. -finline-functions Integrate all simple functions into their callers. The compiler heuristically decides which functions are simple enough to be worth integrating in this way. If all calls to a given function are integrated, and the function is declared "static", then the function is normally not output as assembler code in its own right. Enabled at level -O3. -finline-functions-called-once Consider all "static" functions called once for inlining into their caller even if they are not marked "inline". If a call to a given function is integrated, then the function is not output as assembler code in its own right. Enabled if -funit-at-a-time is enabled. -fearly-inlining Inline functions marked by "always_inline" and functions whose body seems smaller than the function call overhead early before doing -fprofile-generate instrumentation and real inlining pass. Doing so makes profiling significantly cheaper and usually inlining faster on programs having large chains of nested wrapper functions. Enabled by default. -finline-limit=n By default, GCC limits the size of functions that can be inlined. This flag allows the control of this limit for functions that are explicitly marked as inline (i.e., marked with the inline keyword or defined within the class definition in c++). n is the size of func- tions that can be inlined in number of pseudo instructions (not counting parameter han- dling). The default value of n is 600. Increasing this value can result in more inlined code at the cost of compilation time and memory consumption. Decreasing usually makes the compilation faster and less code will be inlined (which presumably means slower programs). This option is particularly useful for programs that use inlining heavily such as those based on recursive templates with C++. Inlining is actually controlled by a number of parameters, which may be specified indivi- ally by using --param name=value. The -finline-limit=n option sets some of these parame- ters as follows: max-inline-insns-single is set to I<n>/2. max-inline-insns-auto is set to I<n>/2. min-inline-insns is set to 130 or I<n>/4, whichever is smaller. max-inline-insns-rtl is set to I<n>. See below for a documentation of the indivial parameters controlling inlining. Note: pseudo instruction represents, in this particular context, an abstract measurement of function』s size. In no way does it represent a count of assembly instructions and as such its exact meaning might change from one release to an another. -fkeep-inline-functions In C, emit "static" functions that are declared "inline" into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the "extern inline" extension in GNU C. In C++, emit any and all inline functions into the object file. -fkeep-static-consts Emit variables declared "static const" when optimization isn』t turned on, even if the vari- ables aren』t referenced. GCC enables this option by default. If you want to force the compiler to check if the variable was referenced, regardless of whether or not optimization is turned on, use the -fno-keep-static-consts option. -fmerge-constants Attempt to merge identical constants (string constants and floating point constants) across compilation units. This option is the default for optimized compilation if the assembler and linker support it. Use -fno-merge-constants to inhibit this behavior. Enabled at levels -O, -O2, -O3, -Os. -fmerge-all-constants Attempt to merge identical constants and identical variables. This option implies -fmerge-constants. In addition to -fmerge-constants this considers e.g. even constant initialized arrays or initialized constant variables with integral or floating point types. Languages like C or C++ require each non-automatic variable to have distinct location, so using this option will result in non-conforming behavior. -fmolo-sched Perform swing molo scheling immediately before the first scheling pass. This pass looks at innermost loops and reorders their instructions by overlapping different itera- tions. -fno-branch-count-reg Do not use "decrement and branch" instructions on a count register, but instead generate a sequence of instructions that decrement a register, compare it against zero, then branch based upon the result. This option is only meaningful on architectures that support such instructions, which include x86, PowerPC, IA-64 and S/390. The default is -fbranch-count-reg, enabled when -fstrength-rece is enabled. -fno-function-cse Do not put function addresses in registers; make each instruction that calls a constant function contain the function』s address explicitly. This option results in less efficient code, but some strange hacks that alter the assembler output may be confused by the optimizations performed when this option is not used. The default is -ffunction-cse -fno-zero-initialized-in-bss If the target supports a BSS section, GCC by default puts variables that are initialized to zero into BSS. This can save space in the resulting code. This option turns off this behavior because some programs explicitly rely on variables going to the data section. E.g., so that the resulting executable can find the beginning of that section and/or make assumptions based on that. The default is -fzero-initialized-in-bss. -fmudflap -fmudflapth -fmudflapir For front-ends that support it (C and C++), instrument all risky pointer/array dereferenc- ing operations, some standard library string/heap functions, and some other associated con- structs with range/validity tests. Moles so instrumented should be immune to buffer overflows, invalid heap use, and some other classes of C/C++ programming errors. The instrumentation relies on a separate runtime library (libmudflap), which will be linked into a program if -fmudflap is given at link time. Run-time behavior of the instrumented program is controlled by the MUDFLAP_OPTIONS environment variable. See "env MUD- FLAP_OPTIONS=-help a.out" for its options. Use -fmudflapth instead of -fmudflap to compile and to link if your program is multi-threaded. Use -fmudflapir, in addition to -fmudflap or -fmudflapth, if instrumenta- tion should ignore pointer reads. This proces less instrumentation (and therefore faster execution) and still provides some protection against outright memory corrupting writes, but allows erroneously read data to propagate within a program. -fstrength-rece Perform the optimizations of loop strength rection and elimination of iteration vari- ables. Enabled at levels -O2, -O3, -Os. -fthread-jumps Perform optimizations where we check to see if a jump branches to a location where another comparison subsumed by the first is found. If so, the first branch is redirected to either the destination of the second branch or a point immediately following it, depending on whether the condition is known to be true or false. Enabled at levels -O2, -O3, -Os. -fcse-follow-jumps In common subexpression elimination, scan through jump instructions when the target of the jump is not reached by any other path. For example, when CSE encounters an "if" statement with an "else" clause, CSE will follow the jump when the condition tested is false. Enabled at levels -O2, -O3, -Os. -fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to follow jumps which conditionally skip over blocks. When CSE encounters a simple "if" statement with no else clause, -fcse-skip-blocks causes CSE to follow the jump around the body of the "if". Enabled at levels -O2, -O3, -Os. -frerun-cse-after-loop Re-run common subexpression elimination after loop optimizations has been performed. Enabled at levels -O2, -O3, -Os. -frerun-loop-opt Run the loop optimizer twice. Enabled at levels -O2, -O3, -Os. -fgcse Perform a global common subexpression elimination pass. This pass also performs global constant and propagation. Note: When compiling a program using computed gotos, a GCC extension, you may get better runtime performance if you disable the global common subexpression elimination pass by adding -fno-gcse to the command line. Enabled at levels -O2, -O3, -Os. -fgcse-lm When -fgcse-lm is enabled, global common subexpression elimination will attempt to move loads which are only killed by stores into themselves. This allows a loop containing a load/store sequence to be changed to a load outside the loop, and a /store within the loop. Enabled by default when gcse is enabled. -fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after global common subexpression elimination. This pass will attempt to move stores out of loops. When used in conjunction with -fgcse-lm, loops containing a load/store sequence can be changed to a load before the loop and a store after the loop. Not enabled at any optimization level. -fgcse-las When -fgcse-las is enabled, the global common subexpression elimination pass eliminates rendant loads that come after stores to the same memory location (both partial and full rendancies). Not enabled at any optimization level. -fgcse-after-reload When -fgcse-after-reload is enabled, a rendant load elimination pass is performed after reload. The purpose of this pass is to cleanup rendant spilling. -floop-optimize Perform loop optimizations: move constant expressions out of loops, simplify exit test con- ditions and optionally do strength-rection as well. Enabled at levels -O, -O2, -O3, -Os. -floop-optimize2 Perform loop optimizations using the new loop optimizer. The optimizations (loop unrolling, peeling and unswitching, loop invariant motion) are enabled by separate flags. -funsafe-loop-optimizations If given, the loop optimizer will assume that loop indices do not overflow, and that the loops with nontrivial exit condition are not infinite. This enables a wider range of loop optimizations even if the loop optimizer itself cannot prove that these assumptions are valid. Using -Wunsafe-loop-optimizations, the compiler will warn you if it finds this kind of loop. -fcrossjumping Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The resulting code may or may not perform better than without cross-jumping. Enabled at levels -O2, -O3, -Os. -fif-conversion Attempt to transform conditional jumps into branch-less equivalents. This include use of conditional moves, min, max, set flags and abs instructions, and some tricks doable by standard arithmetics. The use of conditional execution on chips where it is available is controlled by "if-conversion2". Enabled at levels -O, -O2, -O3, -Os. -fif-conversion2 Use conditional execution (where available) to transform conditional jumps into branch-less equivalents. Enabled at levels -O, -O2, -O3, -Os. -fdelete-null-pointer-checks Use global dataflow analysis to identify and eliminate useless checks for null pointers. The compiler assumes that dereferencing a null pointer would have halted the program. If a pointer is checked after it has already been dereferenced, it cannot be null. In some environments, this assumption is not true, and programs can safely dereference null pointers. Use -fno-delete-null-pointer-checks to disable this optimization for programs which depend on that behavior. Enabled at levels -O2, -O3, -Os. -fexpensive-optimizations Perform a number of minor optimizations that are relatively expensive. Enabled at levels -O2, -O3, -Os. -foptimize-register-move -fregmove Attempt to reassign register numbers in move instructions and as operands of other simple instructions in order to maximize the amount of register tying. This is especially helpful on machines with two-operand instructions. Note -fregmove and -foptimize-register-move are the same optimization. Enabled at levels -O2, -O3, -Os. -fdelayed-branch If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch instructions. Enabled at levels -O, -O2, -O3, -Os. -fschele-insns If supported for the target machine, attempt to reorder instructions to eliminate execution stalls e to required data being unavailable. This helps machines that have slow floating point or memory load instructions by allowing other instructions to be issued until the result of the load or floating point instruction is required. Enabled at levels -O2, -O3, -Os. -fschele-insns2 Similar to -fschele-insns, but requests an additional pass of instruction scheling after register allocation has been done. This is especially useful on machines with a rel- atively small number of registers and where memory load instructions take more than one cycle. Enabled at levels -O2, -O3, -Os. -fno-sched-interblock Don』t schele instructions across basic blocks. This is normally enabled by default when scheling before register allocation, i.e. with -fschele-insns or at -O2 or higher. -fno-sched-spec Don』t allow speculative motion of non-load instructions. This is normally enabled by default when scheling before register allocation, i.e. with -fschele-insns or at -O2 or higher. -fsched-spec-load Allow speculative motion of some load instructions. This only makes sense when scheling before register allocation, i.e. with -fschele-insns or at -O2 or higher. -fsched-spec-load-dangerous Allow speculative motion of more load instructions. This only makes sense when scheling before register allocation, i.e. with -fschele-insns or at -O2 or higher. -fsched-stalled-insns -fsched-stalled-insns=n Define how many insns (if any) can be moved prematurely from the queue of stalled insns into the ready list, ring the second scheling pass. -fno-fsched-stalled-insns and -fsched-stalled-insns=0 are equivalent and mean that no insns will be moved prematurely. If n is unspecified then there is no limit on how many queued insns can be moved prema- turely. -fsched-stalled-insns-dep -fsched-stalled-insns-dep=n Define how many insn groups (cycles) will be examined for a dependency on a stalled insn that is candidate for premature removal from the queue of stalled insns. This has an effect only ring the second scheling pass, and only if -fsched-stalled-insns is used and its value is not zero. +-fno-sched-stalled-insns-dep is equivalent to +-fsched-stalled-insns-dep=0. +-fsched-stalled-insns-dep without a value is equivalent to +-fsched-stalled-insns-dep=1. -fsched2-use-superblocks When scheling after register allocation, do use superblock scheling algorithm. Superblock scheling allows motion across basic block boundaries resulting on faster scheles. This option is experimental, as not all machine descriptions used by GCC model the CPU closely enough to avoid unreliable results from the algorithm. This only makes sense when scheling after register

⑶ 編譯器的優化到底能夠優化到什麼程度

在不改變程序行為的前提下可以任意改寫代碼

⑷ 如何在編譯java的時候,取消編譯器對編譯常量的優化

遇到的問題是想重新編譯某個java文件(比如A.java),裡面有個常量(比如finalinta)和上次編譯時不一樣,但是另一個使用A.class的a的文件(比如B.java)由於在javac在上次編譯的時候將當時的A.class裡面的常量直接給內聯了,所以就達不到想要的效果。
如果是這樣的話,對於String可以使用.intern()來防止編譯器進行優化,對於其他類型,可以要麼不定義為常量,要麼將常量定義為private,然後使用一個static方法來返回這個常量。

⑸ gcc 編譯優化做了哪些事

用過gcc的都應該知道編譯時候的-O選項吧。它就是負責編譯優化。
下面列出它的說明:
-O
-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a
large function.
With -O, the compiler tries to rece code size and execution time, without performing any
optimizations that take a great deal of compilation time.
-O turns on the following optimization flags: -fdefer-pop -fdelayed-branch
-fguess-branch-probability -fcprop-registers -floop-optimize -fif-conversion -fif-conver-
sion2 -ftree-ccp -ftree-dce -ftree-dominator-opts -ftree-dse -ftree-ter -ftree-lrs
-ftree-sra -ftree-rename -ftree-fre -ftree-ch -funit-at-a-time -fmerge-constants

⑹ 如何防止因編譯器開啟優化,而導致程序執行錯誤

我的經驗是:未優化的c程序可正常運行,優化後不能運行,那一定是我的程序有問題。我還沒經歷過不是我程序的情況。
發現這種不易發現的問題,需要看匯編碼。
避免的方法,我的經驗:寫c程序,盡量規矩;似是而非的概念,一定要搞清楚,別僥幸。因為僥幸而留的雷,現在不出問題,將來一定會出問題;不優化不出問題,優化就出問題。
最後要說,每個應用程序,都讓他開優化運行,只要時間允許,一定要查出開優化後出問題的原因。時間不允許,只能不開優化湊合著,在有時間的時候繼續查問題。

⑺ 清濁應用編譯優化怎麼用

清濁是一個有點實用的清理類app,下載後點擊三角鍵即可開始清理。

因為在我的日常清理中我需要自定義目錄的清理,所以寫了這么一個app,當然實用性也很強,可以通過載入任務完成所需要的清理,一些基本功能像空目錄清理、卸載殘留清理也包含在內了。


伺服器為大家提供了基本的清理任務,可以自行載入,當然清濁目前還是第一個版本難免有一些問題什麼的,以後會有越來越多的規則加入,功能也會越來越豐富呢,快來試試吧。


2021.10.07 v1.7.7版本更新說明:

1、幹掉文件夾,安卓11可以訪問【android/data】並幹掉其中的文件夾、

2、排除項加了個排除應用的功能,只排除應用清理的時候哦。其他時候不排除,,注意,長按按鈕可以展開按鈕然後添加應用。

3、應用編譯改了下,上個版本沒加長按全部編譯。

4、文件大小分析安卓11【android/data】不能進去的問題搞定。

5、文件分類分析,刪除文件閃退問題。

6、選擇項的選擇框,加大了一點范圍。

7、應用凍結,選擇應用不再排除已經凍結的應用,因為出現了,暫時不知道原因的,凍結列表丟失的問題,暫時沒找到原因。

8、一些像隱私政策文本顯示不能滑動出錯的問題

9、其他閃退的問題,列表點擊閃退的問題。

⑻ atmel studio怎麼開啟編譯優化

AVRStudio 的編譯優化級別
2017-01-10 10:30
-00 無優化。
-01 減少代碼尺寸和執行時間,不進行需要大量時間的優化。
-02 幾乎執行所有優化,而不考慮代碼尺寸和執行時間。
-03 執行 -02 所有的優化,以及內聯函數,重命名寄存器的優化。
-0S 針對尺寸的優化。執行所有 -02 優化而不增加代碼尺寸。
設置方法:
1.不使用外部的makefile
2.使用外部的makefile

⑼ java如何優化編譯呢

#java編譯器對`String常量表達式`的優化:
- 1.String+String 可以被編譯器識別為常量表達
String a="ab" ;
String b="a"+"b";//編譯後:b="ab"
System.out.println(a==b);//true
分析:
編譯器將"a"+"b"當做常量表達式,在編譯時期進行優化,直接取"ab". 在運行時期
並沒有創建新的對象,而是從jvm字元串常量池中獲取之前已經存在的"ab"對象.

- 2.String+基本類型 可以被編譯器識別為常量表達式

String a="a1";
String b="a"+1; //"a1"
String c="a"+true;//"atrue"
String d="a"+3.14;//"a3.14"

#java編譯器對`常量`優化:
* 它是編譯時的一項優化技術,將代碼的常量計算在編譯期完成,節約了運行時的計算量.

1.常量替換
//編譯前:
final int x=10;
int y=x;

//編譯後
int x=10;
int y=10;//編譯時,常量替換了

2.數學恆等式的模式匹配替換

//編譯前:
int x=10+10;

//編譯後
int x=20;//編譯時,模式匹配替換了

3.常量折疊

//編譯前:
boolean flag=true||(a || b && c);

//編譯後
boolean flag=true;//編譯時,常量折疊了

⑽ java 編譯優化問題

java編譯的結果是位元組碼而不是二進制,所以在運行時vm的優化才是重要的,包括VM的回收策略、分配給VM內存的大小都能在一定程度上影響性能。Sun的VM支持熱點編譯,對高頻執行的代碼段翻譯的2進制會進行緩存,這也是VM的一種優化。

IBM JVM處理數學運算速度最快,BEA JVM處理大量線程和網路socket性能最好,而Sun JVM處理通常的商業邏輯性能最好。不過Hotspot的Server mode被報告有穩定性的問題。

Java 的最大優勢不是體現在執行速度上,所以對Compiler的要求並不如c++那樣高,代碼級的優化還需要程序員本身的功底。

貼個java的運行參數:

Usage: java [-options] class [args...]
(to execute a class)
or java [-options] -jar jarfile [args...]
(to execute a jar file)

where options include:
-client to select the "client" VM
-server to select the "server" VM
-hotspot is a synonym for the "client" VM [deprecated]
The default VM is client.

-cp <class search path of directories and zip/jar files>
-classpath <class search path of directories and zip/jar files>
A ; separated list of directories, JAR archives,
and ZIP archives to search for class files.
-D<name>=<value>
set a system property
-verbose[:class|gc|jni]
enable verbose output
-version print proct version and exit
-version:<value>
require the specified version to run
-showversion print proct version and continue
-jre-restrict-search | -jre-no-restrict-search
include/exclude user private JREs in the version search
-? -help print this help message
-X print help on non-standard options
-ea[:<packagename>...|:<classname>]
-enableassertions[:<packagename>...|:<classname>]
enable assertions
-da[:<packagename>...|:<classname>]
-disableassertions[:<packagename>...|:<classname>]
disable assertions
-esa | -enablesystemassertions
enable system assertions
-dsa | -disablesystemassertions
disable system assertions
-agentlib:<libname>[=<options>]
load native agent library <libname>, e.g. -agentlib:hprof
see also, -agentlib:jdwp=help and -agentlib:hprof=help
-agentpath:<pathname>[=<options>]
load native agent library by full pathname
-javaagent:<jarpath>[=<options>]
load Java programming language agent, see

java.lang.instrument

-Xmixed mixed mode execution (default)
-Xint interpreted mode execution only
-Xbootclasspath:<directories and zip/jar files separated by ;>
set search path for bootstrap classes and resources
-Xbootclasspath/a:<directories and zip/jar files separated by ;>
append to end of bootstrap class path
-Xbootclasspath/p:<directories and zip/jar files separated by ;>
prepend in front of bootstrap class path
-Xnoclassgc disable class garbage collection
-Xincgc enable incremental garbage collection
-Xloggc:<file> log GC status to a file with time stamps
-Xbatch disable background compilation
-Xms<size> set initial Java heap size
-Xmx<size> set maximum Java heap size
-Xss<size> set java thread stack size
-Xprof output cpu profiling data
-Xfuture enable strictest checks, anticipating future default
-Xrs rece use of OS signals by Java/VM (see

documentation)
-Xcheck:jni perform additional checks for JNI functions
-Xshare:off do not attempt to use shared class data
-Xshare:auto use shared class data if possible (default)
-Xshare:on require using shared class data, otherwise fail.

Java虛擬機(JVM)參數配置說明

在Java、J2EE大型應用中,JVM非標准參數的配置直接關繫到整個系統的性能。
JVM非標准參數指的是JVM底層的一些配置參數,這些參數在一般開發中默認即可,不需

要任何配置。但是在生產環境中,為了提高性能,往往需要調整這些參數,以求系統達

到最佳新能。
另外這些參數的配置也是影響系統穩定性的一個重要因素,相信大多數Java開發人員都

見過「OutOfMemory」類型的錯誤。呵呵,這其中很可能就是JVM參數配置不當或者就沒

有配置沒意識到配置引起的。

為了說明這些參數,還需要說說JDK中的命令行工具一些知識做鋪墊。

首先看如何獲取這些命令配置信息說明:
假設你是windows平台,你安裝了J2SDK,那麼現在你從cmd控制台窗口進入J2SDK安裝目

錄下的bin目錄,然後運行java命令,出現如下結果,這些就是包括java.exe工具的和

JVM的所有命令都在裡面。

-----------------------------------------------------------------------
D:\j2sdk15\bin>java
Usage: java [-options] class [args...]
(to execute a class)
or java [-options] -jar jarfile [args...]
(to execute a jar file)

where options include:
-client to select the "client" VM
-server to select the "server" VM
-hotspot is a synonym for the "client" VM [deprecated]
The default VM is client.

-cp <class search path of directories and zip/jar files>
-classpath <class search path of directories and zip/jar files>
A ; separated list of directories, JAR archives,
and ZIP archives to search for class files.
-D<name>=<value>
set a system property
-verbose[:class|gc|jni]
enable verbose output
-version print proct version and exit
-version:<value>
require the specified version to run
-showversion print proct version and continue
-jre-restrict-search | -jre-no-restrict-search
include/exclude user private JREs in the version search
-? -help print this help message
-X print help on non-standard options
-ea[:<packagename>...|:<classname>]
-enableassertions[:<packagename>...|:<classname>]
enable assertions
-da[:<packagename>...|:<classname>]
-disableassertions[:<packagename>...|:<classname>]
disable assertions
-esa | -enablesystemassertions
enable system assertions
-dsa | -disablesystemassertions
disable system assertions
-agentlib:<libname>[=<options>]
load native agent library <libname>, e.g. -agentlib:hprof
see also, -agentlib:jdwp=help and -agentlib:hprof=help
-agentpath:<pathname>[=<options>]
load native agent library by full pathname
-javaagent:<jarpath>[=<options>]
load Java programming language agent, see

java.lang.instrument
-----------------------------------------------------------------------
在控制台輸出信息中,有個-X(注意是大寫)的命令,這個正是查看JVM配置參數的命

令。

其次,用java -X 命令查看JVM的配置說明:
運行後如下結果,這些就是配置JVM參數的秘密武器,這些信息都是英文的,為了方便

閱讀,我根據自己的理解翻譯成中文了(不準確的地方還請各位博友斧正)
-----------------------------------------------------------------------
D:\j2sdk15\bin>java -X
-Xmixed mixed mode execution (default)
-Xint interpreted mode execution only
-Xbootclasspath:<directories and zip/jar files separated by ;>
set search path for bootstrap classes and resources
-Xbootclasspath/a:<directories and zip/jar files separated by ;>
append to end of bootstrap class path
-Xbootclasspath/p:<directories and zip/jar files separated by ;>
prepend in front of bootstrap class path
-Xnoclassgc disable class garbage collection
-Xincgc enable incremental garbage collection
-Xloggc:<file> log GC status to a file with time stamps
-Xbatch disable background compilation
-Xms<size> set initial Java heap size
-Xmx<size> set maximum Java heap size
-Xss<size> set java thread stack size
-Xprof output cpu profiling data
-Xfuture enable strictest checks, anticipating future default
-Xrs rece use of OS signals by Java/VM (see

documentation)
-Xcheck:jni perform additional checks for JNI functions
-Xshare:off do not attempt to use shared class data
-Xshare:auto use shared class data if possible (default)
-Xshare:on require using shared class data, otherwise fail.

The -X options are non-standard and subject to change without notice.
-----------------------------------------------------------------------

JVM配置參數中文說明:
-----------------------------------------------------------------------
1、-Xmixed mixed mode execution (default)
混合模式執行

2、-Xint interpreted mode execution only
解釋模式執行

3、-Xbootclasspath:<directories and zip/jar files separated by ;>
set search path for bootstrap classes and resources
設置zip/jar資源或者類(.class文件)存放目錄路徑

3、-Xbootclasspath/a:<directories and zip/jar files separated by ;>
append to end of bootstrap class path
追加zip/jar資源或者類(.class文件)存放目錄路徑

4、-Xbootclasspath/p:<directories and zip/jar files separated by ;>
prepend in front of bootstrap class path
預先載入zip/jar資源或者類(.class文件)存放目錄路徑

5、-Xnoclassgc disable class garbage collection
關閉類垃圾回收功能

6、-Xincgc enable incremental garbage collection
開啟類的垃圾回收功能

7、-Xloggc:<file> log GC status to a file with time stamps
記錄垃圾回日誌到一個文件。

8、-Xbatch disable background compilation
關閉後台編譯

9、-Xms<size> set initial Java heap size
設置JVM初始化堆內存大小

10、-Xmx<size> set maximum Java heap size
設置JVM最大的堆內存大小

11、-Xss<size> set java thread stack size
設置JVM棧內存大小

12、-Xprof output cpu profiling data
輸入CPU概要表數據

13、-Xfuture enable strictest checks, anticipating future default
執行嚴格的代碼檢查,預測可能出現的情況

14、-Xrs rece use of OS signals by Java/VM (see

documentation)
通過JVM還原操作系統信號

15、-Xcheck:jni perform additional checks for JNI functions
對JNI函數執行檢查

16、-Xshare:off do not attempt to use shared class data
盡可能不去使用共享類的數據

17、-Xshare:auto use shared class data if possible (default)
盡可能的使用共享類的數據

18、-Xshare:on require using shared class data, otherwise fail.
盡可能的使用共享類的數據,否則運行失敗

The -X options are non-standard and subject to change without notice.

熱點內容
如何找到我的伺服器 發布:2024-12-22 19:52:14 瀏覽:298
手掛機腳本游 發布:2024-12-22 19:38:00 瀏覽:429
層次原理圖如何編譯 發布:2024-12-22 19:27:17 瀏覽:371
android計算緩存大小 發布:2024-12-22 19:16:54 瀏覽:660
php訪問模塊 發布:2024-12-22 19:05:24 瀏覽:272
電梯IC加密 發布:2024-12-22 19:04:47 瀏覽:376
腳本圈是引流加粉嗎 發布:2024-12-22 18:41:26 瀏覽:392
ajax文件上傳表單提交 發布:2024-12-22 17:55:00 瀏覽:856
win7無法共享的文件夾 發布:2024-12-22 17:53:39 瀏覽:41
華為手機密碼怎麼解鎖 發布:2024-12-22 17:53:38 瀏覽:554