cygwin編譯linux
A. 在cygwin上怎麼運行linux的軟體
一般都需要重新編譯的,而且基本上很難編譯成功,主要還是因為有很多庫文件沒有相對穩定可靠的win32版本。
比較常用的軟體,一般安鏡像裡面已經有了, 直接用setup選上裝完就可以用了。
B. 如何在Windows中通過Cygwin來使用Linux命令行
終端會以C:Cygwin主目錄作為開始,但是那可能沒有用處,因為你可能並沒有在那裡放置任何文件。你可以使用所有基本的Linux命令,但是要返回C:盤根目錄的話你必須切換目錄到/cygdrive/c。 要想在Windows命令提示符下使用Cygwin,你需要添加Cygwin到Windows環境變數。 通過Win+Pause/Break鍵或者在我的電腦上右鍵選擇屬性打開系統屬性。 在左邊一列選擇高級系統屬性打開系統屬性窗口: 在高級選項里點擊下面的環境變數。 在系統變數里,找到Path變數並單擊進行編輯。 在變數值選項的最後面添加Cygwin下bin路徑:;C:cygwinbin注意:確保前面要加個分號來和其它的變數值進行區分。 點擊「OK」關閉對話,然後打開命令提示符來測試幾個Linux命令。 正如下面的圖片里所看到的,pwd和ls在Windows命令提示符工作正常。你還會看到/cygdrive/c自動被添加到當前目錄顯示裡面了。
C. 如何在windows下藉助cygwin運行LINUX平台的軟體
cygwin是linux模擬環境你在cygwin裡面開發windows程序屬於交叉編譯cygwin調用了cygwin.dll庫來支持linux下gcc的函數對windows的支持。如果不用cygwin.dll,就應該在編譯參數中加上 -mno-cygwin ,意思是使用mingw的庫來編譯。
由此產生的弊端是一些linux中的函數不被支持。
如果要單純的移植,還是帶cygwin.dll一起發布好一點。
但是這種方法也不能保證全部可移植。
C語言能不能移植,還與linux和windows中C庫的實現不同有關。
最簡單的例子,他們的基礎數據類型的表示方法可能不同,在linux中用4個位元組表示的,linux中說不定是8個位元組。由此你函數的輸出結果也就不同。
因此你要做的,就是一點點的翻看兩個系統的定義,確保他們的實現一樣、不會產生二意性。
另外庫函數的返回也可能不一樣,也必須排除不同的返回值。
D. make linux kernel 在cygwin環境下
看錯誤似乎是代碼中的問題,應該是依賴庫的問題,干嗎不裝一個linux系統編譯阿,非得在一個偽linux下弄
E. 哥們 再問下 怎麼可以在cygwin里生成linux的可執行文件 我上午的那個文件在linux系統里沒有用 錯誤的
具體的我沒用過cygwin,還有在linux和windows不一樣,因為linux安裝源碼包文件需要用gcc來編譯、安裝,不能直接運行。如果你要在linux中使用可執行文件
vim test.sh
#!/bin/bash
....(你的代碼)
保存
chmod +x test.sh
./test.sh
F. Windows下怎樣編譯出可在Linux上執行的程序
1、可以安裝cygwin,Cygwin是一個在windows平台上運行的類UNIX模擬環境,是cygnus solutions公司開發的自由軟體,搜索官網下載即可,下載完成,安裝的時候注意記得安裝相關語言的編譯器、解釋器,在cygwin中生成Linux可執行文件。
2、 可以安裝vmware、virtualpc等虛擬機,在虛擬機里安裝linux系統,然後在linux系統中編譯相應的源碼,生成linux上的可執行文件。
G. 有沒有誰在cygwin編譯過交叉編譯器,用於在windows系統下編譯出linux下的elf格式的可執行文件。
用cygwin和用linux基本一樣,只是速度下的區別。
不存在如此的交叉編譯器。可以使用CYGWIN版本的gcc
H. cygwin 中如何安裝arm-linux-gcc交叉編譯器
交叉編譯工具鏈作為嵌入式Linux開發的基礎,直接影響到嵌入式開發的項目進度和完成質量。由於目前大多數開發人員使用Windows作為嵌入式開發的宿主機,在Windows中通過安裝VMware等虛擬機軟體來進行嵌入式Linux開發,這樣對宿主機的性能要求極高。Cygwin直接作為Windows下的軟體完全能滿足嵌入式Linux的開發工作,對硬體的要求低及方便快捷的特點成為嵌入式開發的最佳選擇。
目前網路上Cygwin下直接可用的交叉編譯器寥寥無幾且版本都比較低,不能滿足開源軟體對編譯器版本依賴性的要求(如低版本工具鏈編譯U-Boot出現軟浮點問題等);Crosstool等交叉工具鏈製作工具也是更新跟不上自由軟體版本的進度;同時系統介紹Cygwin下製作交叉編譯器方面的資料很少。針對上述情況,基於最新版gcc等自由軟體構建Cygwin下的交叉編譯器顯得尤為迫切和重要。
構建前准備工作
首先Cygwin下必須保證基本工具比如make}gcc等來構建bootstrap-gcc編譯器,這可以在安裝Cygwin時選擇安裝。參照gcc等安裝說明文檔來在Cygwin下查看是否已經安裝,如輸入gcc --v等。
源碼下載
gcc-4.5.0的編譯需mpc的支持,而mpc又依賴gmp和mpfr庫。從各個項目官方網站上下載的最新的源碼:
binutils-2.20. l .tar.bz2
gmp-S.O. l .tar.bz2
mpc-0.8.2.tar.gz
mpfr-3.O.O.tar.bz2
gcc-4.S.O.tar.bz2
linux-2.6.34.tar.bz2
glibc-2.11.2.tar.bz2
glibc-ports-2. l l .tar.bz2
gdb-7. l.tar.bz2
設置環境變數
HOST:工具鏈要運行的目標機器;BUILD:用來建立工具鏈的機器;TARGET工具鏈編譯產生的二進制代碼可以運行的機器。
BUILD=i686-pc-cygwin
HOST=i686-pc-cygwin TARGET=arm-linux
SYSROOT指定根目錄,$PREFIX指定安裝目錄。目標系統的頭文件、庫文件、運行時對象都將被限定在其中,這在交叉編譯中有時很重要,可以防止使用宿主機的頭文件和庫文件。本文首選$SYSROOT為安裝目錄,$PREFIX主要作為glibc庫安裝目錄。
SYSROOT=/cross-root
PREFIX=/cross-root/arm-linux
由於GCC-4.5.0需要mpfr,gmp,mpc的支持,而這三個庫又不需要交叉編譯,僅僅是在編譯交叉編譯鏈時使用,所以放在一個臨時的目錄。
TEMP_PREFIX=/build-temp
控制某些程序的本地化的環境變數:
LC ALL=POSIX
設置環境變數:
PATH=$SYSROOT/bin:兒in:/usr/bin
設置編譯時的線程數f31減少編譯時間:
PROCS=2
定義各個軟體版本:
BINUTILS V=2.20.1
GCC V=4.5.0
GMP V=5.0.1
MPFR V=3.0.0
MPC V二0.8.2
LINUX V二2.6.34
GLIBC V=2.11.2
GLIBC-PORTS V=2.11
GDB V=7.1
構建過程詳解
鑒於手工編譯費時費力,統一把構建過程寫到Makefile腳本文件中,把其同源碼包放在同一目錄下,執行make或順次執行每個命令即可進行無人值守的編譯安裝交叉工具
鏈。以下主要以Makefile執行過程為主線進行講解。
執行「make」命令實現全速運行
可在Cygwin的Shell環境下執行「make>make.log 2>&1」命令把編譯過程及出現的錯誤都輸出到make.log中,便於查找:
all:prerequest install-deps install-cross-stage-one install-
cross-stage-two
預處理操作
"make prerequest',命令實現單步執行的第一步,實現輸出變數、建立目錄及解壓源碼包等操作。0'set十h」關閉bash的Hash功能,使要運行程序的時候,shell將總是搜索PATH里的目錄[4]。這樣新工具一旦編譯好,shell就可以在$(SYSROOT)/bin目錄里找到: prerequest:
set +h&&mkdir -p $(SYSROOT)/bin&&
mkdir -p $(PREFIX)/include&&
mkdir -p $(TEMP一REFIX)&&
export PATH LCes ALL&&
tar -xvf gmp-$(GMP_V).tar.bz2&&
tar -xvf mpfr-$(MPFR_V).tar.bz2&&
tar -xvf mpc-$(MPC_V).tar.gz&&
tar -xvf binutils-$(BINUTILS_V).tar.bz2&&
tar -xvf gcc-$(GCC_V).tar.bz2&&
tar -xvf linux-$(LINUX_V).tar.bz2&&
tar -xvf glibc-$(GLIBC_V).tar.bz2&&
tar -xvf glibc-ports-$(GLIBC-PORTS_V).tar.bz2&&
my glibc-ports-$(GLIBC-PORTS_V)
glibc-$(GLIBC_V)/ports&&
tar -xvf gdb-$(GDB V).tar.bz2
非交叉編譯安裝gcc支持包mpc
00make install-deps」命令實現單步執行的第二步,實現mpc本地編譯,mpc依賴於gmp和mpfr
install-deps:gmp mpfr mpc
gmp:gmp-$(GMP_V)
mkdir -p build/gmp&&cd build/gmp&&
../../gmp-*/configure
--disable-shared --prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
mpfr:mpfr-$(MPFR_V)
mkdir -p b-uild/mpfr&&cd build/mpfr&&
../..//mpfr-*/configure
LDF'LAGS="-Wl,-search_paths_first」--disable-shared
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS) all&&$(MAKE) install
mpc: mpc-$(MPC_V) gmp mpfr
mkdir -p build/mpc&&cd build/mpc&&
../../mpc-*/configure
--with-mpfr=$(TEMP PREFIX)
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
交叉編譯第一階段
"make install-cross-stage-one',命令實現單步執行的第三步,編譯安裝binutils,bootstrap-gcc和獲取Linux內核頭文件:
install-cross-stage-one:cross-binutils cross-gcc get-kernel-headers
編譯安裝binutils
cross-binutils: binutils-$(BINUTILS_ V)
mkdir -p build/binutils&&cd build/binutils&&
../..//binutils-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-nls&&
$(MAKE)j$(PROCS)&&$(MAKE) install
編譯安裝bootstrap-gcc。使用一disable-shared參數的意思是不編譯和安裝libgcc_ eh.a文件。glibc軟體包依賴這個庫,因為它使用其內部的一lgcc_eh來創建系統[6]。這種依賴
性,可通過建立一個指向libgcc.a符號鏈接得到滿足,因為該文件最終將含有通常在libgcc- eh.a中的對象(也可通過補丁文件實現)。
cross-gcc:gcc-$(GCC_V)
mkdir -p build/gcc&&cd build/gcc&&
二//gcc-*/configure
--target=$(TARGET)--prefix=$(SYSROOT)
--disable-nls --disable-shared --disable-multilib
--disable-decimal-float--disable-threads
--disable-libmudflap --disable-libssp
--disable-libgomp --enable-languages=c
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) -j$(PROCS)&&$(MAICE) install&&
In -vs libgcc.a'arm-linux-gcc -print-libgcc-file-name I
sed's/libgcc/& eh/'}
獲取Linux內核頭文件:
get-kernel-headersainux-$(LINUX_V)
cd linux-$(LINUX_V)&&
$(MAICE) mrproper&&$(MAKE) headers check&&
$(MAKE) ARCH=arm&&
INSTALLes HDR_ PATH=dest headers_ install&&
find dest/include
(-name .install一。-name ..installNaNd)-delete&&
cp -rv desdinclude/* $(PREFIX)/include
交叉編譯第二階段
編譯安裝glibc、重新編譯安裝binutils、完整編譯安裝gcc和編譯安裝gdb o "make install-cross-stage-two',命令實現單步執行的第四步: install-cross-stage-two:cross-glibc cross-rebinutils cross-g++ cross-gdb
編譯安裝glibca glib。的安裝路徑特意選為$(PREFIX),與gcc更好找到動態鏈接庫也有關系,選在$(SYSROOT)提示找不到crti.o; glibc已經不再支持i386; glibc對ARM等的處理器的支持主要通過glibc-ports包來實現;正確認識大小寫敏感(Case Sensitive)和大小寫不敏感(CaseInsensitive)系統,大小寫敏感問題主要影響到glibc,是交叉編譯glibc成功的關鍵:Cygwin幫助手冊中可知Cygwin是默認大小寫不敏感的n},但是UNIX系統是大小寫敏感的,這也是Cygwin和UNIX類系統的一個區別。通過作者自行參考製作的glibc-2.11.2-cygwin.patch補T使glibc變為Case-Insensitive,此補丁主要是對大小寫敏感問題改名來實現。
交叉編譯過程中安裝的鏈接器,在安裝完Glibc以前都無法使用。也就是說這個配置的forced unwind支持測試會失敗,因為它依賴運行中的鏈接器。設置libc_ cvforced unwind=yes這個選項是為了通知configure支持force-unwind,而不需要進行測試。libc cv_c_cleanup=yes類似的,在configure腳本中使用libc_cv_c cleanup=yes,以便配置成跳過測試而支持C語言清理處理。
cross-glibc:glibc-$(GLIBC_V)
cd glibc-$(GLIBC_V)&&
patch -Np 1 –i...//glibc-2.11.2-cygwin.patch&&
cd..&&mkdir -p build/glibc&&
cd build/glibc&&
echo"libc cv_forcedes unwind=yes">config.cache&&
echo "libc cv_c_cleanup=yes">>config.cache&&
echo "libc cv_arm_tls=yes">>config.cache&&
../../glibc-*/configure --host=$(TARGET)
--build=$(../OneScheme/glibc-2.11.2/scripts/config.guess)
--prefix=$(PREFIX)--disable-profile
--enable-add-ons --enable-kernel=2.6.22.5
--with-headers=$(PREFIX)/include
--cache-file=config.cache&&
$(MAKE)&&$(MAKE) install
重新編譯安裝binutils。編譯之前要調整工具鏈,使其
指向新生成的動態連接器。
調整工具鏈:
SPECS=
'dirname $(arm-linux-gcc -print-libgcc-file-name)'/specs
arm-linux-gcc -mpspecs
sed -e 's@/lib(64)\?/ld@$(PREFTX)&@g' -e ,}/}}*cPP}$/{n;s,$,-isystem $(PREFIX)/include,}"
>$SPECS
echo "New specs file is: $SPECS"
unset SPECS
測試調整後工具鏈:
echo 'main(川』>mmy.c
arm-linux-gcc
-B/cross-root/arm-linux/lib mmy.c
readelf -1 a.out I grep』:/cross-roobarm-linux'
調整正確的輸出結果:
[Requesting program interpreter: /tools/lib/ld-linux.so.2j
一切正確後刪除測試程序:
rm -v mmy.c a.out
重新編譯binutils。指定--host,--build及--target,否則配置不成功,其config.guess識別能力不如gcc做的好。
cross-rebinutils: binutils-$(BINUTILS_V)
mkdir -p build/rebinutils&&
cd build/rebinutils&&CC="$(TARGET)-gcc
-B/cross-roodarm-linux/lib/"&&AR=$(TARGET)-ar&&
RANLIB=$(TARGET)-ranlib&&../..//binutils-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--disable-nls
--with-lib-path=$(PREFIX)/lib&&
$(MAKE)--$(PROCS)&&$(MAKE) install
高於4.3版的gcc把這個編譯當作一個重置的編譯器,並且禁止在被一prefix指定的位置搜索startfiles。因為這次不是重置的編譯器,並且$(SYSROOT)目錄中的startfiles對於創
建一個鏈接到$$(SYSROOT)目錄庫的工作編譯器很重要,所以我們使用下面的補丁,它可以部分還原gcc的老功能tai . patch -Npl –i../gcc-4.5.0-startfiles_fix-l.patch
在正常條件下,運行gcc的fixincludes腳本,是為了修復可能損壞的頭文件。它會把宿主系統中已修復的頭文件安裝到gcc專屬頭文件目錄里,通過執行下面的命令,可以抑
制fixincludes腳本的運行[9](此時目錄為/gcc-4.5.0)。
cp -v gcc/Makefile.in{,.orig}
sed 's@\./fixinc\.sh@-c true@'
gcc/Makefile.in.orig > gcc/Makefile.in
下面更改gcc的默認動態鏈接器的位置,使用已安裝在/cross-root/ann-linux目錄下的鏈接器,這樣確保在gcc真實的編譯過程中使用新的動態鏈接器。即在編譯過程中創建的所有
二進制文件,都會鏈接到新的glibc文件
for file in
$(find gcc/config -name linux64.h-o -name linux.h –o -name sysv4.h)
do cp -uv $file{,.orig}
sed -a 's@/lib(64)?(32)?/Id@/cross-root/arm-linux&@g』-e's@/usr@/cross-rootlarm-linux@g' $file.orig>$file echo『
#undef STANDARD INCLUDE DIR
#define STANDARD_ INCLUDE DIR "/cross-root/arm-linux/include"
#define STANDARD STARTFILE PREFIX 1 "/cross-root/arm-linux/lib"
#define STANDARD_ STARTFILE_ PREFIX_ 2」」』>>$file
touch $file.orig done
完整編譯安裝gcc。最好通過指定--libexecdir更改libexecdir到atm-linux目錄下。--with-local-prefix選項指定gcc本地包含文件的安裝路徑此處設為$$(PREFIX),安裝後就會在內核頭文件的路徑下。路徑前指定$(Pwd)則以當前路徑為基點,不指定則默認以/home路徑為基點,這點要注意。
cross-g++:gcc-$(GCC-)
mkdir -p build/g十+&&cd build/g++&&
CC="$(TARGET)-gcc AR=$(TARGET)-ar&&
-B/cross-roodarm-linux/lib/"&&
RANLIB=$(TARGET)-ranlib&&
..//gcc-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--with-local-prefix=$(PREFIX)
--enable-clocale=gnu --enable-shared
--enable-threads=posix --enable -cxa_atexit
--enable-languages=c,c++--enable-c99
--enable-long-long --disable-libstdcxx-pch
--disable-libunwind-exceptions
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) LD_IBRARY_ATH=
$(pwd)/$(../../gcc-4.5.0/config.guess)/libgcc&&
$(MAKE) install
編譯安裝gdb,至此完成整個工具鏈的製作。
cross-gdb: gdb-$(GDB V)
mkdir -p build/gdb&&cd build/gdb&&
../../gdb-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-werror&&
$(MAKE)-j$(PROCS)&&$(MAKE) install
「make clean」命令清除編譯生成的文件和創建解壓的文件夾
.PHONY:clean
dean:
rm -fr $(TEMP_PREFIX) build
binutils-$(BINUTIL,S_V) gcc-$(GCC_V)
glibc-$(NEWL.IB_V) gdb-$(GDB_V)
gmp-$(GMP_V) mpc-$(MPC_V) mpfr-$(MPFR_V)
工具鏈測試
命令行中輸入以下內容:
echo 'main(){}』>mmy.c
arm-linux-gcc -o mmy.exe mmy.c
file mmy.exe
運行正常的結果:
mmy.exe: ELF 32-bit LSB executable, ARM, version 1,for GNU/Linux 2.6.22, dynamically linked (uses shared libs),not stripped.
I. cygwin下編譯linux2.6 kernel失敗,求解決方法!
linux2.6內核成功編譯
1) 需要的工具:
(1) 模塊工具:motils-2.4.21-23.src.rpm
//負責載入模塊,在2.4之前是不必獨立編譯
//模塊存放位置:/lib/moles/內核版本目錄/kernel/drivers
//lsmod: 查看已載入的模塊
(2) 原始碼:linux-2.6.9.tar.gz
//選擇需要編譯的部分: 最新內核2.6.9 支持NTFS分區(只讀)
//查看現有系統支持的文件系統: cat /proc/filesystems
//顯示內核版本: uname -r
反引號: 當作命令執行 cd /lib/moles/`uname -r`
(3) 能加上補丁:patch-2.6.9.gz
(2) 編譯內核的基本步驟
(1) 主要用的編譯命令: make make moles_install make install
(2) 基本安裝: 安裝模塊、安裝內核
------------------------------------------------------------------------------------------------------------------------------------------------
安裝2.6內核的步驟
1 安裝模塊:(1)執行rpm命令將motils-2.4.21-23.src.rpm
安裝到/usr/src/redhat/SOURCES
//rpm -ivh motils-2.4.21-23.src.rpm
//模塊工具是RPM包安裝後默認安裝在/usr/src/redhat/SOURCES
(2)在SOURCIES中含有2個文件mole-init-tools.tar.gz
motils-2.4.21.tar.gz
將mole-init-tools.tar.gz接壓
//tar -xzvf mole-init-tools.tar.gz
// motils-2.4.21.tar.gz文件不是主要要用的,不用接壓
(3)mole-init-tools.tar.gz文件接壓後會有一個
mole-init-tools-3.0-pre1
(4)進入到mole-init-tools-3.0-pre1 目錄中
//cd mole-init-tools-3.0-pre1
(5)在mole-init-tools-3.0-pre1 下編譯
//./configure --prefix=/moles然後執行make接著
make install到這模塊編譯完成
//注釋:/moles是自己建立的目錄,為了以後管理方便
當編譯模塊完成後在/moles文件下會有bin man sbin這3個目錄
(6)開機自動載入模塊編輯/etc/profile
//vi /etc/profile
(7)在/etc/profile文件中在添加 export上面一行 PATH=/moles/bin:/moles/sbin:$PATH
(8)進入到模塊的目錄/moles
進入到其中的sbin中執行一下命令
./generate_modprobe.conf /etc/modprobe.conf
//注釋:generate_modprobe.conf在文件sbin中有這個執行命令
/etc/modprobe.conf是自己輸入的,是規定的
//以上操作是為了規定init
(9)重新啟動計算機,或著source /etc/profile讓其本次操作有效
(10)目前開始編譯內核將linux-2.6.9.tar.gz接壓到/usr/src
//tar -xzvf linux-2.6.9.tar.gz -C /usr/src
(11)接壓後在/usr/src會有 linux-2.6.9目錄
(12)將 linux-2.6.9做一個連接文件
//創建鏈接文件: ln -s linux-2.6.9/ linux
//創建鏈接文件是為了方便管理
(13)進入到創建鏈接文件linux中開始編譯內核
首先運行make menuconfig選擇要編譯的內容,默認也能
//注釋M: 以模塊形式載入
*: 直接編譯進內核
空: 不做操作,不編譯
然後執行make
再後執行moles_install
最後執行make install
到此內核編譯完成
J. cygwin能不能編譯linux內核
交叉編譯工具鏈作為嵌入式Linux開發的基礎,直接影響到嵌入式開發的項目進度和完成質量。由於目前大多數開發人員使用Windows作為嵌入式開發的宿主機,在Windows中通過安裝VMware等虛擬機軟體來進行嵌入式Linux開發,這樣對宿主機的性能要求極高