當前位置:首頁 » 編程軟體 » 編譯技術答案

編譯技術答案

發布時間: 2022-08-20 07:06:44

編譯原理求解答案

編譯原理是計算機軟體專業中的非常重要一門課程。例如:如何把我們編寫的高級語言源程序,翻譯成機器可執行的目標程序,這個就需要用到編譯原理技術。

但是學習編譯原理這門課程時,是需要頭腦中對編譯原理課程中涉及到的所有概念必須是相當清楚的,別人才能夠對你的這些問題進行准確的回答。而不是看到這些似曾親切的內容就敢於回答你的內容的。
故我個人的建議還是:你可以向專門講授編譯原理的老師請教你的問題。
以上就是我很多年前學習編譯原理的親身體會。

⑵ 把編譯程序設計原理(第二版)高等教育出版社的課後答案給我發一份 可以嗎

目錄
第1章編譯器概述
1.1為什麼要學習編譯技術
1.2編譯器和解釋器
1.3編譯器的功能分解和組織結構
1.4編譯器的夥伴
1.5編譯器的復雜性
1.6編譯器的設計與實現
1.7編譯器的測試與維護
第2章一個微型編譯器
2.1基礎知識
2.2ToyL語言
2.3ToyL語言詞法分析器
2.4ToyL語言語法分析器
2.5ToyL語言解釋器
2.6ToyL語言編譯器
第3章有窮自動機與詞法分析
3.1詞法分析基礎
3.1.1詞法分析器的功能
3.1.2單詞識別
3.1.3詞法分析的復雜性
3.1.4字元串
3.1.5保留字處理
3.1.6空格符、回車符、換行符
3.1.7括弧類配對預檢
3.1.8詞法錯誤修正
3.1.9詞法分析獨立化的意義
3.2有窮自動機
3.2.1確定有窮自動機的定義
3.2.2確定有窮自動機的實現
3.2.3非確定有窮自動機
3.2.4NFA到DFA的轉換
3.2.5確定有窮自動機的極小化
3.2.6自動機狀態轉換表的實現
3.3正則表達式
3.3.1正則符號串集
3.3.2正則表達式的定義
3.3.3正則表達式的局限性
3.3.4正則定義
3.3.5正則表達式到有窮自動機的轉換
3.4詞法分析器的構造
3.4.1用DFA人工構造詞法分析器
3.4.2詞法分析器的生成器Lex
練習
第4章文法與語法分析
4.1語法分析
4.1.1語法分析器的輸入
4.1.2語法分析的任務
4.1.3語法分析方法分類
4.2文法和文法分析
4.2.1上下文無關文法和語言
4.2.2最左推導和最右推導
4.2.3語法分析樹與二義性
4.2.4文法分析演算法
4.2.5自頂向下方法概述
4.2.6自底向上方法概述
4.3遞歸下降法——自頂向下分析
4.3.1遞歸下降法原理
4.3.2消除公共前綴
4.3.3代入
4.3.4消除左遞歸
4.4LL分析方法——自頂向下分析
4.4.1LL(1)文法
4.4.2LL(1)分析表
4.4.3LL(1)分析的驅動器
4.4.4LL(1)中的If-Then-Else問題
4.4.5LL(1)分析器的自動生成器LLGen
4.4.6LL(1)分析法與遞歸下降法的比較
4.4.7正則文法
4.5LR方法——自底向上分析
4.5.1句柄
4.5.2活前綴
4.5.3歸約活前綴識別器——LR(0)自動機
4.5.4LR(0)文法及其分析演算法
4.5.5SLR(1)文法及其分析演算法
4.5.6LR(1)文法
4.5.7LALR(1)文法
4.5.8二義性文法的處理
4.5.9另一種Shift-Rece分析技術:簡單優先法
4.5.10LL(1)和LALR(1)方法比較
4.6LR分析器的生成器
4.6.1LALR分析器的生成器YACC
4.6.2LALR分析器的生成器LALRGen
4.7語法錯誤處理
4.7.1錯誤恢復和修復
4.7.2遞歸下降分析的錯誤恢復
4.7.3LL分析的錯誤恢復
4.7.4LR分析的錯誤恢復
練習
第5章語義分析
5.1語義分析基礎
5.1.1語義分析內容
5.1.2標識符信息的內部表示
5.1.3類型信息的內部表示
5.1.4運行時值的表示
5.2符號表
5.2.1符號表查找技術
5.2.2符號表的局部化
5.2.3二叉式局部符號表
5.2.4散列式全局符號表
5.2.5嵌套式全局符號表
5.2.6符號表界面函數
5.3類型分析
5.3.1類型的等價性和相容性
5.3.2類型分析的總控演算法
5.3.3類型名分析
5.3.4枚舉類型分析
5.3.5數組類型分析
5.3.6記錄類型分析
5.3.7聯合類型分析
5.3.8指針類型分析
5.3.9遞歸類型分析
5.4聲明的語義分析
5.4.1聲明的語法結構
5.4.2標號聲明部分的語義分析
5.4.3常量聲明部分的語義分析
5.4.4類型聲明部分的語義分析
5.4.5變數聲明部分的語義分析
5.4.6過程、函數聲明的語義分析
5.5執行體的語義分析
5.5.1執行體的語義分析
5.5.2帶標號語句和轉向語句的語義分析
5.5.3賦值語句的語義分析
5.5.4條件語句的語義分析
5.5.5while循環語句的語義分析
5.5.6for循環語句的語義分析
5.5.7過程調用語句的語義分析
5.5.8表達式的語義分析
5.5.9變數的語義分析
練習
第6章運行時的存儲環境
6.1運行時的存儲空間結構與分配
6.1.1運行時的存儲空間基本結構
6.1.2靜態區的存儲分配
6.1.3棧區的存儲分配
6.1.4堆區的存儲分配
6.1.5堆區空間管理
6.2過程活動記錄與棧區組織結構
6.2.1過程活動記錄
6.2.2活動記錄的填寫
6.2.3棧區組織結構——AR鏈
6.3運行時的變數訪問環境
6.3.1可訪問活動記錄
6.3.2局部Display表方法
6.3.3靜態鏈方法
6.3.4全局Display表方法和寄存器方法
6.3.5無嵌套時的AR及訪問環境
6.4分程序和動態數組空間
6.4.1無動態數組時的分程序空間
6.4.2動態數組空間
練習
第7章面向語法的語義描述
7.1動作文法
7.1.1動作文法定義
7.1.2動作文法的遞歸實現
7.1.3動作文法的LL實現
7.1.4動作文法的LR實現
7.2動作文法應用
7.2.1用動作文法描述表達式計算
7.2.2用動作文法描述表達式抽象樹的構造
7.2.3用動作文法描述語句抽象樹的構造
7.3抽象動作文法及其應用
7.3.1抽象變數
7.3.2抽象動作文法
7.3.3棧式LL動作文法驅動器
7.3.4抽象動作文法到棧式LL動作文法的轉換
7.3.5棧式LR動作文法驅動器
7.3.6抽象動作文法到棧式LR動作文法的轉換
7.4屬性文法
7.4.1屬性文法定義
7.4.2屬性語法樹和屬性依賴圖
7.4.3計算順序
7.4.4屬性值的計算方法
7.4.5拷貝型屬性文法
7.5屬性文法在編譯器設計中的應用
7.5.1類型樹的屬性文法描述
7.5.2表達式中間代碼的屬性文法描述
7.5.3變數中間代碼的屬性文法描述
7.5.4語句中間代碼的屬性文法描述
7.5.5正則表達式到自動機轉換的屬性文法描述
7.6S-屬性文法及其屬性計算
7.6.1S-屬性文法
7.6.2S-屬性文法的遞歸實現
7.6.3S-屬性文法的LR實現
7.7L-屬性文法及其屬性計算
7.7.1L-屬性文法
7.7.2L-屬性文法的遞歸實現
7.7.3L-屬性文法的LR(1)實現
7.8語義分析器的自動生成系統
7.8.1YACC
7.8.2LALRGen
7.8.3Accent系統
練習
第8章中間代碼生成
8.1中間代碼
8.1.1中間代碼的種類
8.1.2後綴式中間代碼
8.1.3三地址中間代碼
8.1.4抽象語法樹和無環有向圖
8.1.5多元式中間代碼
8.1.6中間代碼分量ARG結構
8.2表達式的中間代碼生成
8.2.1表達式的語義信息
8.2.2表達式的中間代碼
8.2.3變數的中間代碼
8.2.4表達式的中間代碼生成
8.2.5變數的中間代碼生成
8.2.6布爾表達式的短路中間代碼
8.3原子語句的中間代碼生成
8.3.1輸入/輸出語句的中間代碼生成
8.3.2goto語句和標號定位語句的中間代碼生成
8.3.3return語句的中間代碼生成
8.3.4賦值語句的中間代碼生成
8.3.5函數(過程)調用的中間代碼生成
8.4結構語句的中間代碼生成
8.4.1條件語句的中間代碼生成
8.4.2while語句的中間代碼生成
8.4.3repeat語句的中間代碼生成
8.4.4for語句的中間代碼生成
8.4.5case語句的中間代碼生成
8.4.6函數聲明的中間代碼生成
練習
第9章中間代碼優化
9.1引言
9.1.1優化的目標和要求
9.1.2優化的必要性
9.1.3優化的內容
9.1.4局部優化和全局優化
9.1.5基本塊和程序流圖
9.2常表達式優化
9.2.1常表達式的局部優化
9.2.2基於常量定值分析的常表達式全局優化
9.2.3常量定值分析
9.3公共表達式優化
9.3.1基於相似性的公共表達式局部優化
9.3.2基於值編碼的公共表達式局部優化
9.3.3基於活躍代碼分析的公共表達式全局優化
9.3.4活躍運算代碼分析
9.4程序流圖循環
9.4.1循環的基本概念
9.4.2支撐結點
9.4.3自然循環
9.4.4可歸約程序流圖
9.4.5基於文本的循環及其處理
9.5循環不變代碼外提
9.5.1代碼外提的基本概念
9.5.2循環不變代碼的判定
9.5.3循環不變代碼外提的條件
9.5.4基於文本循環和定值表的不變代碼外提
9.5.5一種簡單的外提優化方案
9.5.6別名分析
9.5.7過程與函數的副作用分析
9.6循環內歸納表達式的優化
9.6.1歸納變數
9.6.2歸納變數計算的優化演算法原理
練習
第10章目標代碼生成
10.1目標代碼
10.1.1虛擬機代碼
10.1.2目標機代碼
10.1.3窺孔優化
10.2臨時變數
10.2.1臨時變數的特點
10.2.2臨時變數的存儲空間
10.2.3臨時變數的存儲分配
10.2.4變數狀態描述
10.3寄存器
10.3.1寄存器分類及其使用准則
10.3.2寄存器分配單位
10.3.3寄存器狀態描述
10.3.4寄存器分配演算法
10.4基於三地址中間代碼的目標代碼生成
10.4.1目標地址生成
10.4.2間接目標地址的轉換
10.4.3表達式中間代碼的目標代碼生成
10.4.4賦值中間代碼的目標代碼生成
10.4.5其他寄存器分配法
10.4.6標號和goto語句中間代碼的目標代碼生成
10.4.7return中間代碼的目標代碼生成
10.4.8變數中間代碼的目標代碼生成
10.4.9函數調用中間代碼的目標代碼生成
10.5基於AST的代碼生成
10.5.1三地址中間代碼到AST的轉換
10.5.2標記需用寄存器個數
10.5.3從帶寄存器個數標記的AST生成代碼
10.6基於DAG的代碼生成
10.6.1從AST到DAG的轉換
10.6.2DAG排序和虛寄存器
10.6.3從帶序號和虛寄存器標記的DAG生成代碼
10.7代碼生成器的自動生成
10.7.1代碼生成器的自動化
10.7.2基於指令模板匹配的代碼生成技術
10.7.3基於語法分析的代碼生成技術
練習
第11章對象式語言的實現
11.1引言
11.2SOOL語法
11.2.1程序
11.2.2分程序
11.2.3類聲明
11.2.4類型
11.2.5變數聲明
11.2.6函數聲明和方法聲明
11.2.7語句
11.2.8變數
11.2.9表達式
11.2.10程序示例
11.3SOOL語義
11.3.1聲明的作用域
11.3.2Class聲明的語義
11.3.3語句的語義
11.4SOOL語義分析
11.4.1標識符的符號表項
11.4.2符號表結構
11.4.3符號表的局部化
11.5SOOL目標代碼
11.5.1對象空間
11.5.2當前對象——self
11.5.3活動記錄
11.5.4成員變數的目標地址
11.5.5表達式的目標代碼
11.5.6Offset原理
11.5.7類的多態性
11.5.8目標代碼區
11.5.9方法的動態綁定
11.5.10快速動態綁定目標代碼
主要參考文獻

⑶ 現代編譯原理c語言描述 這本書有答案嗎

新手的話建議可以看看譚浩強的C程序設計,基本語法會了,可以看下數據結構和演算法,接下來看計算機組成原理-->編譯原理-->操作系統-->計算機網路。這些學好了,可以深入研究演算法,另外可以看點計算機圖形學和人工智慧。程序最核心的是演算法,所以數學基礎要好,不能只能做一輩子碼奴。其次英語要好,只要能看懂一般的英文文檔就OK了。給你介紹一些書。1、演算法計算機程序設計藝術-------Donald.E.Knuth----------演算法「倚天屠龍」雙劍演算法導論-----------------ThomasH.Cormen--------演算法「倚天屠龍」雙劍離散數學及其應用----------KennethH.Rosen具體數學—計算機科學基礎--------Donald.E.Knuth2、數據結構數據結構C++數據結構演算法與應用3、C語言C程序設計語言(第2版·新版)---C語言「倚天屠龍雙劍」---BrianW.Kernighan「C語言之父」CPrimerPlus中文版(第五版)--------C語言「倚天屠龍雙劍」---StephenPrataC程序設計(第三版)---------------------------譚浩強C語言大全(第四版)---------------------------HERBERTSCHILDTC語言介面與實現:創建可重用軟體的技術-------------DAVIDR.HANSONC語言參考手冊(原書第5版)--------------------------SamuelP.HarbisonC程序設計教程---------------------------------H.M.Deitel/P.J.DeitelC陷阱與缺陷-----------------------------------AndrewKoenig5、C++C++程序設計語言(特別版)---c++八大金剛----BjarneStroustrup「C++之父」C++Primer(第3版)中文版----c++八大金剛---StanleyB.LippmanC++Primer(第4版)中文版----c++八大金剛---StanleyB.LippmanC++標准程序庫—自修教程與參考手冊--c++八大金剛--NicolaiM.JosuttisC++語言的設計和演化-----c++八大金剛----BjarneStroustrup「C++之父」深度探索C++對象模型---c++八大金剛----StanleyB.LippmanEssentialC++中文版---c++八大金剛---StanleyB.LippmanEffectiveC++中文版2ndEdition-----c++八大金剛------ScottMeyersMoreEffectiveC++中文版----c++八大金剛------ScottMeyersC++編程思想(第2版)第1卷:標准C++導引--------BruceEckelC++編程思想(第2版)第2卷:實用編程技術--------BruceEckelC++程序設計--------------------------譚浩強C++程序設計教程(第2版)--------------錢能C++PrimerPlus(第五版)中文版---StephenPrata6、操作系統深入理解計算機系統(修訂版)-------RANDALE.BRYANT計算機操作系統(第六版)7、編譯原理跟我一起寫makefile《編譯原理技術和工具》-------Alfred-------龍書《現代編譯原理-C語言描述》-----------AndrewW.Appel-----------虎書《高級編譯器設計與實現》-----------StevenS.Muchnick-----------鯨書8、網路計算機網路第四版中文版-----------AndrewS.Tanenbaum-------網路編程三劍客TCP/IP詳解3卷本--------------------RichardStevens----網路編程三劍客UNIX網路編程2卷本--------------------RichardStevens----網路編程三劍客用TCP/IP進行網際互聯-----------DouglasE.Comer高級TCP/IP編程-------------------JonC.SnaderC++網路編程-----------------------DouglasSchmidtUNIX環境高級編程(第2版)--------------------RichardStevens9、LinuxLinux內核設計與實現Linux內核完全注釋LINUX內核分析及編程

⑷ 編譯原理及編譯程序構造課後習題答案 薛聯鳳

您好,《普通高校計算機專業精品教材系列:編譯原理及編譯程序構造(第2版)》介紹編譯理論基礎及其實現方法,強調語言的形式化定義、編譯技術的各種概念及實現過程的具體方法。介紹過程以演算法為核心,力求簡單明了地反映編譯的基礎知識。從形式語言理論角度討論詞法分析和語法分析技術,為計算機軟體工作者開發大型軟體打下良好基礎。《普通高校計算機專業精品教材系列:編譯原理及編譯程序構造(第2版)》以理論聯系實際為宗旨,內容深入淺出,重點突出,並結合構造el語言的編譯程序介紹一種常用而又簡單的編譯方法。

⑸ ABCD是集合且均非空集,AxB=CxD,證明A=C且B=D

如下圖所示。

離散數學(Discrete mathematics)是研究離散量的結構及其相互關系的數學學科,是現代數學的一個重要分支。


隨著信息時代的到來,工業革命時代以微積分為代表的連續數學佔主流的地位已經發生了變化,離散數學的重要性逐漸被人們認識。

離散數學課程所傳授的思想和方法,廣泛地體現在計算機科學技術及相關專業的諸領域,從科學計算到信息處理,從理論計算機科學到計算機應用技術,從計算機軟體到計算機硬體,從人工智慧到認知系統,無不與離散數學密切相關。

離散的含義是指不同的連接在一起的元素,主要是研究基於離散量的結構和相互間的關系,其對象一般是有限個或可數個元素。

離散數學在各學科領域,特別在計算機科學與技術領域有著廣泛的應用,同時離散數學也是計算機專業的專業課程,如程序設計語言、數據結構、操作系統、編譯技術、人工智慧、資料庫、演算法設計與分析、理論計算機科學基礎等必不可少的先行課程。

⑹ 了解什麼叫做jit compiling,與傳統的編譯技術有何不同

java 應用程序的性能經常成為開發社區中的討論熱點。因為該語言的設計初衷是使用解釋的方式支持應用程序的可移植性目標,早期
Java 運行時所提供的性能級別遠低於 C 和
C++
之類的編譯語言。盡管這些語言可以提供更高的性能,但是生成的代碼只能在有限的幾種系統上執行。在過去的十年中,Java
運行時供應商開發了一些復雜的動態編譯器,通常稱作即時(Just-in-time,JIT)編譯器。程序運行時,JIT
編譯器選擇將最頻繁執行的方法編譯成本地代碼。運行時才進行本地代碼編譯而不是在程序運行前進行編譯(用 C 或
C++ 編寫的程序正好屬於後一情形),保證了可移植性的需求。有些 JIT 編譯器甚至不使用解釋程序就能編譯所有的代碼,但是這些編譯器仍然通過在程序執行時進行一些操作來保持 Java 應用程序的可移植性。
由於動態編譯技術的多項改進,在很多應用程序中,現代的 JIT 編譯器可以產生與 C 或 C++
靜態編譯相當的應用程序性能。但是,仍然有很多軟體開發人員認為 —— 基於經驗或者傳聞 ——
動態編譯可能嚴重干擾程序操作,因為編譯器必須與應用程序共享 CPU。一些開發人員強烈呼籲對 Java
代碼進行靜態編譯,並且堅信那樣可以解決性能問題。對於某些應用程序和執行環境而言,這種觀點是正確的,靜態編譯可以極大地提高 Java
性能,或者說它是惟一的實用選擇。但是,靜態地編譯 Java 應用程序在獲得高性能的同時也帶來了很多復雜性。一般的
Java 開發人員可能並沒有充分地感受到 JIT 動態編譯器的優點。

本文考察了 Java 語言靜態編譯和動態編譯所涉及的一些問題,重點介紹了實時 (RT) 系統。簡要描述了 Java
語言解釋程序的操作原理並說明了現代 JIT 編譯器執行本地代碼編譯的優缺點。介紹了 IBM 在 WebSphere Real Time 中發布的
AOT 編譯技術和它的一些優缺點。然後比較了這兩種編譯策略並指出了幾種比較適合使用 AOT
編譯的應用程序領域和執行環境。要點在於這兩種編譯技術並不互斥:即使在使用這兩種技術最為有效的各種應用程序中,它們也分別存在一些影響應用程序的優缺
點。

執行 Java 程序

Java 程序最初是通過 Java SDK 的 javac程序編譯成本地的與平台無關的格式(類文件)。可將此格式看作 Java
平台,因為它定義了執行 Java 程序所需的所有信息。Java 程序執行引擎,也稱作 Java 運行時環境(JRE),包含了為特定的本地平台實現
Java 平台的虛擬機。例如,基於 Linux 的 Intel x86 平台、Sun Solaris 平台和 AIX 操作系統上運行的 IBM
System p 平台,每個平台都擁有一個 JRE。這些 JRE 實現實現了所有的本地支持,從而可以正確執行為
Java 平台編寫的程序。

事實上,操作數堆棧的大小有實際限制,但是編程人員極少編寫超出該限制的方法。JVM 提供了安全性檢查,對那些創建出此類方法的編程人員進行通知。

Java 平台程序表示的一個重要部分是位元組碼序列,它描述了 Java
類中每個方法所執行的操作。位元組碼使用一個理論上無限大的操作數堆棧來描述計算。這個基於堆棧的程序表示提供了平台無關性,因為它不依賴任何特定本地平台
的 CPU 中可用寄存器的數目。可在操作數堆棧上執行的操作的定義都獨立於所有本地處理器的指令集。Java
虛擬機(JVM)規范定義了這些位元組碼的執行(參見 參考資料)。執行 Java 程序時,用於任何特定本地平台的任何 JRE 都必須遵守 JVM
規范中列出的規則。

因為基於堆棧的本地平台很少(Intel X87 浮點數協處理器是一個明顯的例外),所以大多數本地平台不能直接執行 Java 位元組碼。為了解決這個問題,早期的 JRE 通過解釋位元組碼來執行 Java 程序。即 JVM 在一個循環中重復操作:

◆獲取待執行的下一個位元組碼;

◆解碼;

◆從操作數堆棧獲取所需的操作數;

◆按照 JVM 規范執行操作;

◆將結果寫回堆棧。

這種方法的優點是其簡單性:JRE 開發人員只需編寫代碼來處理每種位元組碼即可。並且因為用於描述操作的位元組碼少於 255 個,所以實現的成本比較低。當然,缺點是性能:這是一個早期造成很多人對 Java 平台不滿的問題,盡管擁有很多其他優點。

解決與 C 或 C++ 之類的語言之間的性能差距意味著,使用不會犧牲可移植性的方式開發用於 Java 平台的本地代碼編譯。

編譯 Java 代碼

盡管傳聞中 Java 編程的 「一次編寫,隨處運行」
的口號可能並非在所有情況下都嚴格成立,但是對於大量的應用程序來說情況確實如此。另一方面,本地編譯本質上是特定於平台的。那麼 Java
平台如何在不犧牲平台無關性的情況下實現本地編譯的性能?答案就是使用 JIT 編譯器進行動態編譯,這種方法已經使用了十年(參見圖 1):

圖 1. JIT 編譯器

使用 JIT 編譯器時,Java
程序按每次編譯一個方法的形式進行編譯,因為它們在本地處理器指令中執行以獲得更高的性能。此過程將生成方法的一個內部表示,該表示與位元組碼不同但是其級
別要高於目標處理器的本地指令。(IBM JIT
編譯器使用一個表達式樹序列表示方法的操作。)編譯器執行一系列優化以提高質量和效率,最後執行一個代碼生成步驟將優化後的內部表示轉換成目標處理器的本
地指令。生成的代碼依賴運行時環境來執行一些活動,比如確保類型轉換的合法性或者對不能在代碼中直接執行的某些類型的對象進行分配。JIT
編譯器操作的編譯線程與應用程序線程是分開的,因此應用程序不需要等待編譯的執行。

圖 1 中還描述了用於觀察執行程序行為的分析框架,通過周期性地對線程取樣找出頻繁執行的方法。該框架還為專門進行分析的方法提供了工具,用來存儲程序的此次執行中可能不會改變的動態值。

因為這個 JIT 編譯過程在程序執行時發生,所以能夠保持平台無關性:發布的仍然是中立的 Java 平台代碼。C 和 C++ 之類的語言缺乏這種優點,因為它們在程序執行前進行本地編譯;發布給(本地平台)執行環境的是本地代碼。

挑戰

盡管通過 JIT 編譯保持了平台無關性,但是付出了一定代價。因為在程序執行時進行編譯,所以編譯代碼的時間將計入程序的執行時間。任何編寫過大型 C 或 C++ 程序的人都知道,編譯過程往往較慢。

為了克服這個缺點,現代的 JIT
編譯器使用了下面兩種方法的任意一種(某些情況下同時使用了這兩種方法)。第一種方法是:編譯所有的代碼,但是不執行任何耗時多的分析和轉換,因此可以快
速生成代碼。由於生成代碼的速度很快,因此盡管可以明顯觀察到編譯帶來的開銷,但是這很容易就被反復執行本地代碼所帶來的性能改善所掩蓋。第二種方法是:
將編譯資源只分配給少量的頻繁執行的方法(通常稱作熱方法)。低編譯開銷更容易被反復執行熱代碼帶來的性能優勢掩蓋。很多應用程序只執行少量的熱方法,因
此這種方法有效地實現了編譯性能成本的最小化。

動態編譯器的一個主要的復雜性在於權衡了解編譯代碼的預期獲益使方法的執行對整個程序的性能起多大作用。一個極端的例子是,程序執行後,您非常清楚哪些方
法對於這個特定的執行的性能貢獻最大,但是編譯這些方法毫無用處,因為程序已經完成。而在另一個極端,程序執行前無法得知哪些方法重要,但是每種方法的潛
在受益都最大化了。大多數動態編譯器的操作介於這兩個極端之間,方法是權衡了解方法預期獲益的重要程度。

Java 語言需要動態載入類這一事實對 Java
編譯器的設計有著重要的影響。如果待編譯代碼引用的其他類還沒有載入怎麼辦?比如一個方法需要讀取某個尚未載入的類的靜態欄位值。Java
語言要求第一次執行類引用時載入這個類並將其解析到當前的 JVM
中。直到第一次執行時才解析引用,這意味著沒有地址可供從中載入該靜態欄位。編譯器如何處理這種可能性?編譯器生成一些代碼,用於在沒有載入類時載入並解
析類。類一旦被解析,就會以一種線程安全的方式修改原始代碼位置以便直接訪問靜態欄位的地址,因為此時已獲知該地址。

IBM JIT
編譯器中進行了大量的努力以便使用安全而有效率的代碼補丁技術,因此在解析類之後,執行的本地代碼只載入欄位的值,就像編譯時已經解析了欄位一樣。另外一
種方法是生成一些代碼,用於在查明欄位的位置以前一直檢查是否已經解析欄位,然後載入該值。對於那些由未解析變成已解析並被頻繁訪問的欄位來說,這種簡單
的過程可能帶來嚴重的性能問題。

動態編譯的優點

動態地編譯 Java 程序有一些重要的優點,甚至能夠比靜態編譯語言更好地生成代碼,現代的 JIT 編譯器常常向生成的代碼中插入掛鉤以收集有關程序行為的信息,以便如果要選擇方法進行重編譯,就可以更好地優化動態行為。

關於此方法的一個很好的例子是收集一個特定 array操作的長度。如果發現每次執行操作時該長度基本不變,則可以為最頻繁使用的

array長度生成專門的代碼,或者可以調用調整為該長度的代碼序列。由於內存系統和指令集設計的特性,用於復制內存的最佳通用常式的執行速度通
常比用於復制特定長度的代碼慢。例如,復制 8
個位元組的對齊的數據可能需要一到兩條指令直接復制,相比之下,使用可以處理任意位元組數和任意對齊方式的一般復制循環可能需要 10 條指令來復制同樣的 8

個位元組。但是,即使此類專門的代碼是為某個特定的長度生成的,生成的代碼也必須正確地執行其他長度的復制。生成代碼只是為了使常見長度的操作執行得更快,
因此平均下來,性能得到了改進。此類優化對大多數靜態編譯語言通常不實用,因為所有可能的執行中長度恆定的操作比一個特定程序執行中長度恆定的操作要少得
多。

此類優化的另一個重要的例子是基於類層次結構的優化。例如,一個虛方法調用需要查看接收方對象的類調用,以便找出哪個實際目標實現了接收方對象的虛方法。
研究表明:大多數虛調用只有一個目標對應於所有的接收方對象,而 JIT
編譯器可以為直接調用生成比虛調用更有效率的代碼。通過分析代碼編譯後類層次結構的狀態,JIT
編譯器可以為虛調用找到一個目標方法,並且生成直接調用目標方法的代碼而不是執行較慢的虛調用。當然,如果類層次結構發生變化,並且出現另外的目標方法,
則 JIT
編譯器可以更正最初生成的代碼以便執行虛調用。在實踐中,很少需要作出這些更正。另外,由於可能需要作出此類更正,因此靜態地執行這種優化非常麻煩。

因為動態編譯器通常只是集中編譯少量的熱方法,所以可以執行更主動的分析來生成更好的代碼,使編譯的回報更高。事實上,大部分現代的
JIT
編譯器也支持重編譯被認為是熱方法的方法。可以使用靜態編譯器(不太強調編譯時間)中常見的非常主動的優化來分析和轉換這些頻繁執行的方法,以便生成更好
的代碼並獲得更高的性能。

這些改進及其他一些類似的改進所產生的綜合效果是:對於大量的 Java 應用程序來說,動態編譯已經彌補了與 C 和 C++ 之類語言的靜態本地編譯性能之間的差距,在某些情況下,甚至超過了後者的性能。

缺點

但是,動態編譯確實具有一些缺點,這些缺點使它在某些情況下算不上一個理想的解決方案。例如,因為識別頻繁執行的方法以及編譯這些方法需要時間,所以應用
程序通常要經歷一個准備過程,在這個過程中性能無法達到其最高值。在這個准備過程中出現性能問題有幾個原因。首先,大量的初始編譯可能直接影響應用程序的
啟動時間。不僅這些編譯延遲了應用程序達到穩定狀態的時間(想像 Web
伺服器經
歷一個初始階段後才能夠執行實際有用的工作),而且在准備階段中頻繁執行的方法可能對應用程序的穩定狀態的性能所起的作用也不大。如果 JIT
編譯會延遲啟動又不能顯著改善應用程序的長期性能,則執行這種編譯就非常浪費。雖然所有的現代 JVM
都執行調優來減輕啟動延遲,但是並非在所有情況下都能夠完全解決這個問題。

其次,有些應用程序完全不能忍受動態編譯帶來的延遲。如 GUI 介面之類互動式應用程序就是這樣的例子。在這種情況下,編譯活動可能對用戶使用造成不利影響,同時又不能顯著地改善應用程序的性能。

最後,用於實時環境並具有嚴格的任務時限的應用程序可能無法忍受編譯的不確定性性能影響或動態編譯器本身的內存開銷。

因此,雖然 JIT 編譯技術已經能夠提供與靜態語言性能相當(甚至更好)的性能水平,但是動態編譯並不適合於某些應用程序。在這些情況下,Java 代碼的提前(Ahead-of-time,AOT)編譯可能是合適的解決方案。

AOT Java 編譯

大致說來,Java 語言本地編譯應該是為傳統語言(如 C++ 或
Fortran)而開發的編譯技術的一個簡單應用。不幸的是,Java 語言本身的動態特性帶來了額外的復雜性,影響了 Java
程序靜態編譯代碼的質量。但是基本思想仍然是相同的:在程序執行前生成 Java 方法的本地代碼,以便在程序運行時直接使用本地代碼。目的在於避免
JIT 編譯器的運行時性能消耗或內存消耗,或者避免解釋程序的早期性能開銷。

挑戰

動態類載入是動態 JIT 編譯器面臨的一個挑戰,也是 AOT
編譯的一個更重要的問題。只有在執行代碼引用類的時候才載入該類。因為是在程序執行前進行 AOT
編譯的,所以編譯器無法預測載入了哪些類。就是說編譯器無法獲知任何靜態欄位的地址、任何對象的任何實例欄位的偏移量或任何調用的實際目標,甚至對直接調
用(非虛調用)也是如此。在執行代碼時,如果證明對任何這類信息的預測是錯誤的,這意味著代碼是錯誤的並且還犧牲了 Java 的一致性。

因為代碼可以在任何環境中執行,所以類文件可能與代碼編譯時不同。例如,一個 JVM
實例可能從磁碟的某個特定位置載入類,而後面一個實例可能從不同的位置甚至網路載入該類。設想一個正在進行 bug
修復的開發環境:類文件的內容可能隨不同的應用程序的執行而變化。此外,Java 代碼可能在程序執行前根本不存在:比如 Java
反射服務通常在運行時生成新類來支持程序的行為。

缺少關於靜態、欄位、類和方法的信息意味著嚴重限制了 Java 編譯器中優化框架的大部分功能。內聯可能是靜態或動態編譯器應用的最重要的優化,但是由於編譯器無法獲知調用的目標方法,因此無法再使用這種優化。

內聯

內聯是一種用於在運行時生成代碼避免程序開始和結束時開銷的技術,方法是將函數的調用代碼插入到調用方的函數中。但是內聯最大的益處可能是優化方可見的代碼的范圍擴大了,從而能夠生成更高質量的代碼。下面是一個內聯前的代碼示例:

int foo() { int x=2, y=3; return bar(x,y); }final int bar(int a, int b) { return a+b; }

如果編譯器可以證明這個 bar就是 foo()中調用的那個方法,則 bar中的代碼可以取代 foo()中對
bar()的調用。這時,bar()方法是 final類型,因此肯定是 foo()中調用的那個方法。甚至在一些虛調用例子中,動態 JIT
編譯器通常能夠推測性地內聯目標方法的代碼,並且在絕大多數情況下能夠正確使用。編譯器將生成以下代碼:

int foo() { int x=2, y=3; return x+y; }

在這個例子中,簡化前名為值傳播的優化可以生成直接返回
5的代碼。如果不使用內聯,則不能執行這種優化,產生的性能就會低很多。如果沒有解析
bar()方法(例如靜態編譯),則不能執行這種優化,而代碼必須執行虛調用。運行時,實際調用的可能是另外一個執行兩個數字相乘而不是相加的
bar方法。所以不能在 Java 程序的靜態編譯期間直接使用內聯。

AOT
代碼因此必須在沒有解析每個靜態、欄位、類和方法引用的情況下生成。執行時,每個這些引用必須利用當前運行時環境的正確值進行更新。這個過程可能直接影響
第一次執行的性能,因為在第一次執行時將解析所有引用。當然,後續執行將從修補代碼中獲益,從而可以更直接地引用實例、靜態欄位或方法目標。

另外,為 Java 方法生成的本地代碼通常需要使用僅在單個 JVM 實例中使用的值。例如,代碼必須調用 JVM
運行時中的某些運行時常式來執行特定操作,如查找未解析的方法或分配內存。這些運行時常式的地址可能在每次將 JVM 載入到內存時變化。因此 AOT
編譯代碼需要綁定到 JVM 的當前執行環境中,然後才能執行。其他的例子有字元串的地址和常量池入口的內部位置。

在 WebSphere Real Time 中,AOT 本地代碼編譯通過 jxeinajar工具(參見圖 2)來執行。該工具對 JAR 文件中所有類的所有方法應用本地代碼編譯,也可以選擇性地對需要的方法應用本地代碼編譯。結果被存儲到名為 Java eXEcutable (JXE) 的內部格式中,但是也可輕松地存儲到任意的持久性容器中。

您可能認為對所有的代碼進行靜態編譯是最好的方法,因為可以在運行時執行最大數量的本地代碼。但是此處可以作出一些權衡。編譯的方法越多,代碼佔用的內存
就越多。編譯後的本地代碼大概比位元組碼大 10 倍:本地代碼本身的密度比位元組碼小,而且必須包含代碼的附加元數據,以便將代碼綁定到 JVM
中,並且在出現異常或請求堆棧跟蹤時正確執行代碼。構成普通 Java 應用程序的 JAR
文件通常包含許多很少執行的方法。編譯這些方法會消耗內存卻沒有什麼預期收益。相關的內存消耗包括以下過程:將代碼存儲到磁碟上、從磁碟取出代碼並裝入
JVM,以及將代碼綁定到 JVM。除非多次執行代碼,否則這些代價不能由本地代碼相對解釋的性能優勢來彌補。

圖 2. jxeinajar

跟大小問題相違背的一個事實是:在編譯過的方法和解釋過的方法之間進行的調用(即編譯過的方法調用解釋過的方法,或者相反)可能比這兩類方法各自內部之間
進行的調用所需的開銷大。動態編譯器通過最終編譯所有由 JIT
編譯代碼頻繁調用的那些解釋過的方法來減少這項開銷,但是如果不使用動態編譯器,則這項開銷就不可避免。因此如果是選擇性地編譯方法,則必須謹慎操作以使
從已編譯方法到未編譯方法的轉換最小化。為了在所有可能的執行中都避免這個問題而選擇正確的方法會非常困難。
優點
雖然 AOT 編譯代碼具有上述的缺點和挑戰,但是提前編譯 Java 程序可以提高性能,尤其是在不能將動態編譯器作為有效解決方案的環境中。

可以通過謹慎地使用 AOT 編譯代碼加快應用程序啟動,因為雖然這種代碼通常比 JIT
編譯代碼慢,但是卻比解釋代碼快很多倍。此外,因為載入和綁定 AOT
編譯代碼的時間通常比檢測和動態編譯一個重要方法的時間少,所以能夠在程序執行的早期達到那樣的性能。類似地,互動式應用程序可以很快地從本地代碼中獲
益,無需使用引起較差響應能力的動態編譯。

RT 應用程序也能從 AOT 編譯代碼中獲得重要的收益:更具確定性的性能超過了解釋的性能。WebSphere Real Time
使用的動態 JIT 編譯器針對在 RT 系統中的使用進行了專門的調整。使編譯線程以低於 RT
任務的優先順序操作,並且作出了調整以避免生成帶有嚴重的不確定性性能影響的代碼。但是,在一些 RT 環境中,出現 JIT
編譯器是不可接受的。此類環境通常需要最嚴格的時限管理控制。在這些例子中,AOT
編譯代碼可以提供比解釋過的代碼更好的原始性能,又不會影響現有的確定性。消除 JIT
編譯線程甚至消除了啟動更高優先順序 RT 任務時發生的線程搶占所帶來的性能影響。

優缺點統計

動態(JIT)編譯器支持平台中立性,並通過利用應用程序執行的動態行為和關於載入的類及其層次結構的信息來生成高質量的代碼。但是
JIT
編譯器具有一個有限的編譯時預算,而且會影響程序的運行時性能。另一方面,靜態(AOT)編譯器則犧牲了平台無關性和代碼質量,因為它們不能利用程序的動
態行為,也不具有關於載入的類或類層次結構的信息。AOT 編譯擁有有效無限制的編譯時預算,因為 AOT
編譯時間不會影響運行時性能,但是在實踐中開發人員不會長期等待靜態編譯步驟的完成。

表 1 總結了本文討論的 Java 語言動態和靜態編譯器的一些特性:

表 1. 比較編譯技術

兩種技術都需要謹慎選擇編譯的方法以實現最高的性能。對動態編譯器而言,編譯器自身作出決策,而對於靜態編譯器,由開發人員作出選擇。讓
JIT 編譯器選擇編譯的方法是不是優點很難說,取決於編譯器在給定情形中推斷能力的好壞。在大多數情況下,我們認為這是一種優點。

因為它們可以最好地優化運行中的程序,所以 JIT 編譯器在提供穩定狀態性能方面更勝一籌,而這一點在大量的生產 Java
系統中最為重要。靜態編譯可以產生最佳的互動式性能,因為沒有運行時編譯行為來影響用戶預期的響應時間。通過調整動態編譯器可以在某種程度上解決啟動和確
定性性能問題,但是靜態編譯在需要時可提供最快的啟動速度和最高級別的確定性。表 2 在四種不同的執行環境中對這兩種編譯技術進行了比較:

表 2. 使用這些技術的最佳環境

圖 3 展示了啟動性能和穩定狀態性能的總體趨勢:

圖 3. AOT 和 JIT 的性能對比

使用 JIT 編譯器的初始階段性能很低,因為要首先解釋方法。隨著編譯方法的增多及 JIT
執行編譯所需時間的縮短,性能曲線逐漸升高最後達到性能峰值。另一方面,AOT 編譯代碼啟動時的性能比解釋的性能高很多,但是無法達到 JIT
編譯器所能達到的最高性能。將靜態代碼綁定到 JVM 實例中會產生一些開銷,因此開始時的性能比穩定狀態的性能值低,但是能夠比使用 JIT
編譯器更快地達到穩定狀態的性能水平。

沒有一種本地代碼編譯技術能夠適合所有的 Java
執行環境。某種技術所擅長的通常正是其他技術的弱項。出於這個原因,需要同時使用這兩種編譯技術以滿足 Java
應用程序開發人員的要求。事實上,可以結合使用靜態和動態編譯以便提供最大可能的性能提升 —— 但是必須具備平台無關性,它是 Java
語言的主要賣點,因此不成問題。

結束語

本文探討了 Java 語言本地代碼編譯的問題,主要介紹了 JIT 編譯器形式的動態編譯和靜態 AOT 編譯,比較了二者的優缺點。

雖然動態編譯器在過去的十年裡實現了極大的成熟,使大量的各種 Java 應用程序可以趕上或超過靜態編譯語言(如 C++ 或
Fortran)所能夠達到的性能。但是動態編譯在某些類型的應用程序和執行環境中仍然不太合適。雖然 AOT
編譯號稱動態編譯缺點的萬能解決方案,但是由於 Java 語言本身的動態特性,它也面臨著提供本地編譯全部潛能的挑戰。

這兩種技術都不能解決 Java 執行環境中本地代碼編譯的所有需求,但是反過來又可以在最有效的地方作為工具使用。這兩種技術可以相互補充。能夠恰當地使用這兩種編譯模型的運行時系統可以使很大范圍內的應用程序開發環境中的開發人員和用戶受益。

⑺ 把匯編源程序變成代碼程序的過程是()

把匯編源程序變成代碼程序的過程是編譯。

編譯語言不像直譯語言一樣,由解釋器將代碼一句一句運行,而是以編譯器,先將代碼編譯為機器碼,再加以運行。理論上,任何編程語言都可以是編譯式,或直譯式的。它們之間的區別,僅與程序的應用有關。

編譯程序的語法分析器以單詞符號作為輸入,分析單詞符號串是否形成符合語法規則的語法單位,如表達式、賦值、循環等,最後看是否構成一個符合要求的程序,按該語言使用的語法規則分析檢查每條語句是否有正確的邏輯結構,程序是最終的一個語法單位。



(7)編譯技術答案擴展閱讀:

編譯技術的發展

在早期馮諾依曼計算機時期 (20世紀40年代) 程序都是以機器語言編寫,機器語言就是實際存儲的01代碼,編寫程序是十分枯燥乏味的。

後來匯編語言代替機器語言一符號形式該處操作指令和地址編碼。但匯編語言仍有許多缺點, 閱讀理解起來很難,而且必須依賴於特定的機器,如果想使編寫好的程序在另一台計算機上運行必須重寫。

在20世紀50年代IBM的John Backus帶領一個研究小組對FORTRAN高級語言及其編譯器進行開發。編譯程序的自動生成工具初現端倪,現在很多自動生成工具已經廣泛使用例如語法分析工具LEX,語言分析程序YACC等。

在20世紀60年代人們不斷的用自編譯技術構造編譯程序,即用被編譯的語言本身來實現該語言的編譯程序,但其基本原理和結構大體相同。



⑻ 開發大神門幫忙解答一下圖中這兩道編譯技術題,萬分感謝!!

實現一個時間類Time。將小時,分鍾和秒存儲為int型成員變數。要求該類中包含一個構造函數,訪問用的函數,一個推進當前時間的函數adv(),一個重新設置當前時間(即將當前時間設為00:00:00)的函數reset()和輸出結果函數print()。注意時間按數字式電子表格式顯示,即小時、分、秒分別用兩位表示,如果其中之一小於10,則前方補0,如22:01:00(中間不含空格),另外按該格式依次輸出時、分、秒後,以endl結尾。當輸入時間超出合法范圍(提示:注意上下界)時,請自動按照24小時制進行轉換,如輸入25:00:61,則輸出應為01:01:01。

#include
using namespace std;
class Time{
public:
Time(int hour,int minute,int second);
Time(){
hour=0;
minute=0;
second=0;
}
void showTime()
{if(second>=60){
minute++;second=second%60;
if(minute>=60){
hour++;minute=minute%60;

熱點內容
如何配置2檸檬酸 發布:2025-02-06 00:57:26 瀏覽:434
積木源碼 發布:2025-02-06 00:55:26 瀏覽:545
變分的運演算法則 發布:2025-02-06 00:55:21 瀏覽:775
x2哪個配置性價比高 發布:2025-02-06 00:40:12 瀏覽:109
豬哥亮訪問張菲 發布:2025-02-06 00:37:52 瀏覽:570
期貨賬戶怎麼改密碼 發布:2025-02-06 00:32:35 瀏覽:279
qq自動上傳群文件 發布:2025-02-06 00:26:25 瀏覽:111
安卓照片放在什麼地方 發布:2025-02-06 00:26:24 瀏覽:988
linux系統鏡像iso 發布:2025-02-06 00:15:39 瀏覽:188
存儲上料模塊的意義 發布:2025-02-06 00:14:14 瀏覽:125