交叉編譯windows庫
1. 在WINDOWS下交叉編譯linux程序運行不了是為什麼
交叉編譯出來的文件在目標機上無法運行大多由兩個原因造成:
1 交叉編譯工具鏈與目標機架構不匹配,也就是選錯了編譯工具;
2 缺少依賴庫,這種情況可使用ldd命令查看依賴項,檢查一下是否缺少依賴庫文件
2. 什麼是交叉編譯為什麼要使用交叉編譯
就是指編譯器在某一個平台下能夠編譯出另外一個平台下運行的程序
主要是為了多平台應用程序使用的
比如某一個程序,在windows下和linux和MacOS下都有相應的運行版本,使用交叉編譯就可以在一個平台下全部完成,而不用切換到對應的平台再去編譯
3. windows7下搭建eclipse對stm32的交叉編譯環境,ECLIPSE(C/C++ JUNO)+yagarto+mingw+gunplugin gcc版本
JRE的版本問題,導致插件不能使用,導致不能連接到有效的庫文件,所以,重裝吧。一定要選對版本
4. linux mount windows共享目錄 交叉編譯安卓動態庫傳輸錯誤
那就是軟體問題了
5. gcc -arm這個交叉編譯工具。有沒有可以再window上使用的
yagarto和codesourcery都是在windows下用的,官方已經編譯打包好的
EXE文件
cygwin下可以自己編譯源代碼,做出GNU工具鏈
mingw也可以實現
還有一些在windows下用的IDE,專門針對GNU工具鏈的,code::blocks,emide等
我在用emIDE,arm-none-eabi-gdb調試ARM
6. 如何在windows上用ndk交叉編譯其他平台程序
目標 :編譯arm64的.so庫
編譯方法:理論上應該有兩種交叉編譯方法,法一,在Linux伺服器上安裝交叉工具鏈,直接用交叉工具鏈進行編譯鏈接;法二,使用ndk完成交叉編譯,因為
ndk已經安裝好交叉編譯工具鏈,以及相關的系統庫和系統頭文件了。這兩種方法的區別在於,linux伺服器上的編譯使用的makefile和ndk使用的.mk
文件顯然不同。原因是ndk作為一個集成編譯環境,制定了一套特定的規則用於生成最終的編譯腳本。
這里簡單總結下,如何在windows用ndk進行交叉編譯arm64目標平台的.so庫:
step1:找到ndk開發工具包,官網之類的都可以下載,Android-ndk64-r10-windows-x86_64.rar文件
step2:解壓上述ndk工具包,將包含程序源文件和頭文件的文件夾testProject都放入android-ndk-r10下的samples目錄下。
放在其他地方當然也可以,但是後續相對路徑之類的不太好加,既然其他例子都放這,把代碼放這編譯是最保險的了。
step3:在testProject中增加一個jni的文件夾,必須要添加!!!!!!
step4:在jni文件夾中,添加一個Android.mk的文件,必須要添加!!!!!
step5:在jni文件夾中,添加一個Application.mk的文件與Android.mk並列,必須要添加!!!!!
step6:Android.mk和Application.mk合起來就類似於linux環境下的makefile編譯文件。
如何寫Android.mk,可以參考例子helllo-jni中jni文件夾下的Android.mk。
LOCAL_PATH:=$(call my-dir) #必須要寫的
include $(CLEAR_VARS) #必須要寫的
LOCAL_MODULE:=hello-jni #編譯出來的模塊名稱
LOCAL_SRC_FILES:=hello-jni.c #制定編譯的源文件名稱
include $(BUILD_SHARED_LIBRARY)#放在最後
除了上述變數之外,還有其他的指定的變數,
LOCAL_CFLAGS,用於指定編譯選項,這個和makefile中是完全一樣的,可以指定編譯選項-g,也可以指定編譯宏及宏值
LOCAL_LDLIBS,用於指定鏈接的依賴庫,這個可以makefile也是完全一樣的,可以指定鏈接庫用-l庫名,以及指定庫搜索路徑用_L路徑名
LOCAL_STATIC_LIBRARIES,指定鏈接的靜態庫名,makefile中沒有
LOCAL_C_INCLUDES,用於指定編譯頭文件的路徑,和makefile中不同,路徑前不需要加-I,直接寫路徑即可,可以是相對路徑或絕對路徑,
多個路徑之間用空格隔開。
編寫上述Android.mk碰到的問題有,
(1)使用默認的系統自動載入stl庫頭文件總是出錯,只好手動在LOCAL_STATIC_LIBRARIES指定sources/cxx-stl/stlport/stlport來完成對#include<string>這種c++形式的頭文件載入
(2)使用$(SYSROOT)/usr/include來完成對系統庫頭文件的載入,結果找不到sem_t符號,只好指定platforms/android-L/arch-arm64/usr/include
step7:Application.mk編寫
APP_STL指定使用的stl移植庫,動態或者靜態都行
APP_CPPFLAGS,指定app編譯的編譯選項
APP_ABI指定abi規范類型,例如arm64-v8a,也可以寫成ALL就是把所有的類型全部編一編
APP_PLATFORM指定編譯的platform名稱,這里可以寫成android-L或者不指定全編。
step8:編譯完成後,運行。
啟動cmd,使用cd /D進行到testProject的jni目錄下
step9:將android-ndk-r10下的ndk-build.cmd直接拖拽到cmd中,此時直接敲回車,就可以編譯了。當然也可以加一個 clean,清除編譯中間文件。
step10:檢查下編譯結果,編譯成功後在testProject中多了兩個文件夾與jni並列的,libs和obj。
編譯鏈接後的結果就在libs中!
7. 如何搭建交叉編譯環境
交叉編譯環境就是在Windows下的東西拿到Linux下編譯運行吧,我個人是在Linux啟動了samba伺服器,然後將文件夾映射到Windows下,在Windows下使用vc 6.0編程序然後到Linux下編譯的。不知道能不能對你有些幫助。
下載的rpm包,可以使用rpm -ivh 包路徑進行安裝
8. 如何在windows平台下交叉編譯gcc-C/C++
我怎麼記得回答過呢? cygwin + 交叉編譯器(這個必須是 for cygwin 的) Colinux + 交叉編譯器(這個直接可以用 Linux 下面的) 虛擬機 + 交叉編譯器(同上,虛擬機里就是一個 Linux) 雙引導進 Linux + 交叉編譯器
9. 如何在Windows下構建ARM Linux QT開發環境
准備工作:
首先,最不可思議的,是要在Linux下把QT編譯一遍,因為庫都是一樣的,需要的就是一些Windows下的qmake、moc、uic之類的工具而已。因為QT源碼很多地方不能在Windows下面交叉編譯通過,雖然我改了一些代碼和配置(一會兒我貼出補丁來),但我只用它編譯了qtbase、qtdeclarative這兩個模塊和qttools模塊中的一部分。
Linux下的編譯可以參照我之前寫的這篇文章。參考配置:
開發包:
./configure -extprefix /opt/qt/5.2.1/arm -prefix /usr -plugindir /usr/lib/qt/plugins -importdir /usr/lib/qt/imports -qmldir /usr/lib/qt/qml -make libs -xplatform linux-arm-gnueabi-g++ -opengl es2 -confirm-license -opensource -xcb -xinput2 -nomake examples -nomake tests -qt-zlib -qt-xcb -dbus -largefile -cups -no-fontconfig -glib -gtkstyle -qt-freetype -sysroot /opt/sysroot-arm -mysql_config /opt/sysroot-arm/usr/bin/mysql_config -v
運行庫:
./configure -prefix /usr -plugindir /usr/lib/qt/plugins -importdir /usr/lib/qt/imports -qmldir /usr/lib/qt/qml -make libs -xplatform linux-arm-gnueabi-g++ -opengl es2 -confirm-license -opensource -xcb -xinput2 -nomake examples -nomake tests -qt-zlib -qt-xcb -dbus -largefile -cups -no-fontconfig -glib -gtkstyle -qt-freetype -sysroot /opt/sysroot-arm -mysql_config /opt/sysroot-arm/usr/bin/mysql_config -v
做完這一步,你獲得兩樣東西,sysroot和linux下的ARM QT開發文件。sysroot是編譯QT之前,用Buildroot做的開發用根目錄。這兩個東西都要拷貝到Windows里,因為Windows不支持符號連接,拷貝需要需要去掉這些連接,這么做:
cp [源目錄] [目標目錄] -Lr
第二,需要一個Windows下模擬Linux環境的東西和編譯器,我用的是MSYS和MinGW,因為他們編譯出來的程序比Cygwin快。在這里可以找到:http://www.mingw.org/。
第三,需要Linaro ARM GCC編譯器,Windows版本的。在這里可以找到:http://www.linaro.org/downloads/
第四,需要python,Windows版本的。在這里可以找到:https://www.python.org/downloads/
下載、安裝,然後在MSYS根目錄的/etc/profile裡面export PATH=$PATH:[Python安裝目錄]
第五,需要pkg-config,Windows版本的,這個比較麻煩,需要下載以下三個文件,並提取出我們需要的東西:
http://ftp.acc.umu.se/pub/gnome/binaries/win32/dependencies/pkg-config_0.26-1_win32.zip
(提取pkg-config.exe)
http://ftp.gnome.org/pub/gnome/binaries/win32/glib/2.28/glib_2.28.8-1_win32.zip
(提取libglib-2.0-0.dll)
http://ftp.acc.umu.se/pub/gnome/binaries/win32/dependencies/gettext-runtime_0.18.1.1-2_win32.zip (提取intl.dll)
把他們都放到MSYS的bin目錄下,然後給pkg-config.exe做一個腳本pkg-config,因為下載的pkg-config.exe比較蠢,在同時指定PKG_CONFIG_SYSROOT_DIR和PKG_CONFIG_LIBDIR這兩個環境變數的時候,第一個cflags會輸出兩次PKG_CONFIG_SYSROOT_DIR。這么做這個腳本:
#!/bin/sh
pushd / > /dev/null
ROOTDIR=`pwd -W 2>/dev/null`
popd > /dev/null
SYSROOT=$PKG_CONFIG_SYSROOT_DIR
pkg-config.exe "$@" | sed "s#$SYSROOT$SYSROOT#$SYSROOT#g" | sed "s#$ROOTDIR##g"
最後去掉$ROOTDIR前綴是為了和Linux Makefile兼容,同時也不會影響在make中的地址轉換,最後,QT源碼和我的補丁。
我的補丁如下:
diff -Naur qt-everywhere-opensource-src-5.2.1-old/qtbase/configure qt-everywhere-opensource-src-5.2.1/qtbase/configure
--- qt-everywhere-opensource-src-5.2.1-old/qtbase/configure 2014-02-02 04:37:23 +0800
+++ qt-everywhere-opensource-src-5.2.1/qtbase/configure 2014-08-27 22:34:47 +0800
@@ -4022,6 +4022,10 @@
done
(cd "$outpath/qmake"; "$MAKE") || exit 2
+ if [ -e "$outpath/bin/qmake.exe" ]; then
+ echo '#!/bin/sh' > "$outpath/bin/qmake"
+ echo "$outpath/bin/qmake.exe" '"$@"' "-unix" >> "$outpath/bin/qmake"
+ fi
fi # Build qmake
echo "Running configuration tests..."
@@ -4091,9 +4095,9 @@
# when xcompiling, check environment to see if it's actually usable
if [ -z "$PKG_CONFIG_LIBDIR" ]; then
if [ -n "$CFG_SYSROOT" ] && [ -d "$CFG_SYSROOT/usr/lib/pkgconfig" ]; then
- PKG_CONFIG_LIBDIR=$CFG_SYSROOT/usr/lib/pkgconfig:$CFG_SYSROOT/usr/share/pkgconfig
+ PKG_CONFIG_LIBDIR=$CFG_SYSROOT/usr/lib/pkgconfig\;$CFG_SYSROOT/usr/share/pkgconfig
if [ -n "$GCC_MACHINE_DUMP" ]; then
- PKG_CONFIG_LIBDIR=$PKG_CONFIG_LIBDIR:$CFG_SYSROOT/usr/lib/$GCC_MACHINE_DUMP/pkgconfig
+ PKG_CONFIG_LIBDIR=$PKG_CONFIG_LIBDIR\;$CFG_SYSROOT/usr/lib/$GCC_MACHINE_DUMP/pkgconfig
fi
export PKG_CONFIG_LIBDIR
echo >&2 "Note: PKG_CONFIG_LIBDIR automatically set to $PKG_CONFIG_LIBDIR"
diff -Naur qt-everywhere-opensource-src-5.2.1-old/qtbase/mkspecs/linux-arm-gnueabi-g++/qmake.conf qt-everywhere-opensource-src-5.2.1/qtbase/mkspecs/linux-arm-gnueabi-g++/qmake.conf
--- qt-everywhere-opensource-src-5.2.1-old/qtbase/mkspecs/linux-arm-gnueabi-g++/qmake.conf 2014-02-02 04:37:37 +0800
+++ qt-everywhere-opensource-src-5.2.1/qtbase/mkspecs/linux-arm-gnueabi-g++/qmake.conf 2014-08-28 00:08:34 +0800
@@ -11,14 +11,21 @@
include(../common/g++-unix.conf)
# modifications to g++.conf
-QMAKE_CC = arm-linux-gnueabi-gcc
-QMAKE_CXX = arm-linux-gnueabi-g++
-QMAKE_LINK = arm-linux-gnueabi-g++
-QMAKE_LINK_SHLIB = arm-linux-gnueabi-g++
+QMAKE_CC = arm-linux-gnueabihf-gcc
+QMAKE_CXX = arm-linux-gnueabihf-g++
+QMAKE_LINK = arm-linux-gnueabihf-g++
+QMAKE_LINK_SHLIB = arm-linux-gnueabihf-g++
# modifications to linux.conf
-QMAKE_AR = arm-linux-gnueabi-ar cqs
-QMAKE_OBJCOPY = arm-linux-gnueabi-obj
-QMAKE_NM = arm-linux-gnueabi-nm -P
-QMAKE_STRIP = arm-linux-gnueabi-strip
+QMAKE_AR = arm-linux-gnueabihf-ar cqs
+QMAKE_OBJCOPY = arm-linux-gnueabihf-obj
+QMAKE_NM = arm-linux-gnueabihf-nm -P
+QMAKE_STRIP = arm-linux-gnueabihf-strip
+
+# support for OpenGL
+QMAKE_LIBS_EGL = -lEGL
+QMAKE_LIBS_OPENGL_ES1 = -lGLES_CM
+QMAKE_LIBS_OPENGL_ES2 = -lGLESv2
+#QMAKE_LIBS +=
+
load(qt_config)
diff -Naur qt-everywhere-opensource-src-5.2.1-old/qtbase/qmake/generators/makefile.cpp qt-everywhere-opensource-src-5.2.1/qtbase/qmake/generators/makefile.cpp
--- qt-everywhere-opensource-src-5.2.1-old/qtbase/qmake/generators/makefile.cpp 2014-02-02 04:37:29 +0800
+++ qt-everywhere-opensource-src-5.2.1/qtbase/qmake/generators/makefile.cpp 2014-08-26 13:53:15 +0800
@@ -1161,8 +1161,8 @@
QString srcf = (*sit).toQString();
QString dstf = (*oit).toQString();
- t << escapeDependencyPath(dstf) << ": " << escapeDependencyPath(srcf)
- << " " << escapeDependencyPaths(findDependencies(srcf)).join(" \\\n\t\t");
+ t << escapeDependencyPath(dstf).replace(QRegExp("\\\\"), "/") << ": " << escapeDependencyPath(srcf).replace(QRegExp("\\\\"), "/")
+ << " " << escapeDependencyPaths(findDependencies(srcf)).replaceInStrings(QRegExp("\\\\"), "/").join(" \\\n\t\t");
ProKey comp, cimp;
for(QStringList::Iterator cppit = Option::cpp_ext.begin(); cppit != Option::cpp_ext.end(); ++cppit) {
@@ -3346,6 +3346,8 @@
QString MakefileGenerator::installMetaFile(const ProKey &replace_rule, const QString &src, const QString &dst)
{
QString ret;
+ QString src_p = src;
+ QString dst_p = dst;
if (project->isEmpty(replace_rule)
|| project->isActiveConfig("no_sed_meta_install")) {
ret += "-$(INSTALL_FILE) \"" + src + "\" \"" + dst + "\"";
@@ -3362,7 +3364,7 @@
+ "," + windowsifyPath(replace.toQString()) + ",gi");
}
}
- ret += " \"" + src + "\" >\"" + dst + "\"";
+ ret += " \"" + src_p.replace(QRegExp("\\\\"), "/") + "\" >\"" + dst_p.replace(QRegExp("\\\\"), "/") + "\"";
}
return ret;
}
struct TermChain {
TermChain(PatternTerm term)
diff -Naur qt-everywhere-opensource-src-5.2.1-old/qttools/src/linguist/lrelease/lrelease.pro qt-everywhere-opensource-src-5.2.1/qttools/src/linguist/lrelease/lrelease.pro
--- qt-everywhere-opensource-src-5.2.1-old/qttools/src/linguist/lrelease/lrelease.pro 2014-02-02 04:37:57 +0800
+++ qt-everywhere-opensource-src-5.2.1/qttools/src/linguist/lrelease/lrelease.pro 2014-08-28 10:42:55 +0800
@@ -1,4 +1,7 @@
option(host_build)
+
+win32-g++*:QMAKE_CXXFLAGS_CXX11 = -std=gnu++0x
+
QT = core-private
DEFINES += QT_NO_CAST_FROM_ASCII QT_NO_CAST_TO_ASCII
diff -Naur qt-everywhere-opensource-src-5.2.1-old/qttools/src/linguist/lupdate/lupdate.pro qt-everywhere-opensource-src-5.2.1/qttools/src/linguist/lupdate/lupdate.pro
--- qt-everywhere-opensource-src-5.2.1-old/qttools/src/linguist/lupdate/lupdate.pro 2014-02-02 04:37:57 +0800
+++ qt-everywhere-opensource-src-5.2.1/qttools/src/linguist/lupdate/lupdate.pro 2014-08-28 10:46:59 +0800
@@ -1,4 +1,7 @@
option(host_build)
+
+win32-g++*:QMAKE_CXXFLAGS_CXX11 = -std=gnu++0x
+
QT = core-private
qtHaveMole(qmldevtools-private) {
接下來開始配置:
其中-extprefix定義安裝位置,在編譯完以後可以改,一會兒說;-prefix、-plugindir、-importdir、-qmldir定義的位置是目標板上的位置,加雙斜杠是為了防止MSYS翻譯這些路徑成MSYS的路徑,其他的設定與Linux下的編譯沒有不同。Linux下編譯的sysroot可以拷貝到例如:E:/MinGW/opt/sysroot-arm。
然後編譯
make mole-qtbase
make mole-qtdeclarative
cd qttools/src/linguist
../../../qtbase/bin/qmake.exe -unix linguist.pro
make
編譯的時候可能會有幾個庫有鏈接錯誤,找不到一大堆gl、egl打頭的函數,這是因為相應的Makefile裡面的LIBS沒有自動加上-lEGL -lGLES_CM -lGLESv2;但是正式使用qmake的時候不會,很奇怪;因為也就幾個地方,出問題了手工加一下吧,我沒去查原因改代碼。
編譯linguist的時候可能會遇到這個問題:http://qt-project.org/forums/viewthread/33370,按裡面說的處理。
編譯完了以後,把下列文件拷貝到Linux下編譯的ARM QT開發包的bin目錄中去:
然後,刪掉對應的ARM QT開發包的bin目錄中沒有exe後綴的文件,那些是Linux下的。
最後一步,確保安裝路徑正確,也就是說,如果配置Windows下QT的時候設定-extprefix E:/MinGW/opt/qt/5.2.1/arm,那就要把替換過exe文件的ARM QT開發包放到這個位置,如果路徑改了,可以用二進制搜索工具去qmake.exe中替換這個字串。
補充一下關於調試的問題,其實不是很關鍵。
在使用Debug模式編譯的時候,最後會出現如下提示:
warning: A handler for the OS ABI "GNU/Linux" is not built into this configuration
of GDB. Attempting to continue with the default i386 settings.
這是因為在mkspecs/features/unix/gdb_dwarf_index.prf中,有這樣一段:
QMAKE_GDB_INDEX += \
test \$\$(gdb --version | sed -e \'s,[^0-9][^0-9]*\\([0-9]\\)\\.\\([0-9]\\).*,\\1\\2,;q\') -gt 72 && \
gdb --nx --batch --quiet -ex \'set confirm off\' -ex \"save gdb-index $$QMAKE_GDB_DIR\" -ex quit \'$(TARGET)\' && \
test -f $(TARGET).gdb-index && \
$$QMAKE_OBJCOPY --add-section \'.gdb_index=$(TARGET).gdb-index\' --set-section-flags \'.gdb_index=readonly\' \'$(TARGET)\' \'$(TARGET)\' && \
$$QMAKE_DEL_FILE $(TARGET).gdb-index || true
很顯然,這段代碼把調試用的GDB默認為「gdb」了,所以應該改成你用的gdb,比如arm-linux-gnueabihf-gdb。另外,這里的sed對GDB版本的判斷,無法識別像「GNU gdb (Sourcery CodeBench Lite 2014.05-29) 7.7.50.20140217-cvs」這樣的版本信息的,只能識別像「GNU gdb (GDB) 7.6.1」這樣的版本信息,所以你有可能看不到剛才那段提示。想解決,要麼重新寫一段sed的正則表達式,要麼直接就把這個test ... -gt 72刪掉。
10. 如何構建交叉編譯環境。
你說的是我下面的回答嗎?下面就一些問題作一個說明,以期拋磚引玉。
基於Linux操作系統的應用開發環境一般是由目標系統硬體(開發板)和宿主PC機所構成。目標硬體開發板用於運行操作系統和系統應用軟體,而目標板所用到的操作系統的內核編譯、應用程序的開發和調試則需要通過宿主PC機來完成(所以稱為交叉編譯)。雙方之間一般通過串口,並口或乙太網介面建立連接關系。
但在此我建議構建如下的交叉編譯環境,適合個人或研發小組使用:單獨拿出一台PC機(PII以上即可,就用以前淘汰的舊機器就可以),在該PC上安裝桌面的Linux操作系統(如Red Hat Linux 8.0及以上),可以採用默認的安裝選項(注意要包含FTP服務),這台PC作為Linux伺服器,除管理員以外,一般不直接讓其他人去操作。
將該Linux伺服器接入區域網,並新建一些合法用戶,以便其他的PC機(在此我們將其稱為工作站)的合法用戶能訪問到Linux伺服器。而其他的PC機(工作站)仍然使用Windows操作系統,原來幹啥繼續幹啥。
需要的軟體工具包括:
1、FTP客戶端程序(如Cuteftp,可到網上下載)。
2、Telnet工具(如SecureCRT,可到網上下載)。
3、移植到某一特定ARM平台的Linux操作系統內核源碼(一般由銷售商整理提供)。
4、GNU編譯工具,可由相關網站下載,或由銷售商整理提供。
在工作站安裝:
在某工作站PC上安裝FTP客戶端程序和Telnet工具,安裝完畢後應該可以在該工作站PC和Linux伺服器之間進行文件的傳輸,並在工作站PC可以通過Telnet登陸到Linux伺服器(可能需要將Linux伺服器的防火牆服務關閉才能完成)。
在Linux伺服器安裝:
將工作站PC上的Linux操作系統內核源碼壓縮包和GNU編譯工具通過FTP傳送到Linux伺服器的某個目錄(如合法的用戶目錄),然後在該目錄下解壓,並將GNU編譯工具安裝到默認的工作目錄即可,以上工作通過在工作站PC使用Telnet工具完成,而不需要在Linux伺服器上進行。
Linux操作系統內核的編譯:
Linux操作系統內核的編譯一般有一個比較固定的步驟,會根據MakeFile文件的不同而略有差異,可參考相關文檔,編譯的工作在工作站PC使用Telnet工具完成。