加密des
des.h文件:
#ifndefCRYPTOPP_DES_H
#defineCRYPTOPP_DES_H
#include"cryptlib.h"
#include"misc.h"
NAMESPACE_BEGIN(CryptoPP)
classDES:publicBlockTransformation
{
public:
DES(constbyte*userKey,CipherDir);
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const
{DES::ProcessBlock(inoutBlock,inoutBlock);}
enum{KEYLENGTH=8,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
protected:
staticconstword32Spbox[8][64];
SecBlock<word32>k;
};
classDESEncryption:publicDES
{
public:
DESEncryption(constbyte*userKey)
:DES(userKey,ENCRYPTION){}
};
classDESDecryption:publicDES
{
public:
DESDecryption(constbyte*userKey)
:DES(userKey,DECRYPTION){}
};
classDES_EDE_Encryption:publicBlockTransformation
{
public:
DES_EDE_Encryption(constbyte*userKey)
:e(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=16,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESe,d;
};
classDES_EDE_Decryption:publicBlockTransformation
{
public:
DES_EDE_Decryption(constbyte*userKey)
:d(userKey,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=16,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESd,e;
};
classTripleDES_Encryption:publicBlockTransformation
{
public:
TripleDES_Encryption(constbyte*userKey)
:e1(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION),
e2(userKey+2*DES::KEYLENGTH,ENCRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=24,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESe1,d,e2;
};
classTripleDES_Decryption:publicBlockTransformation
{
public:
TripleDES_Decryption(constbyte*userKey)
:d1(userKey+2*DES::KEYLENGTH,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION),
d2(userKey,DECRYPTION){}
voidProcessBlock(constbyte*inBlock,byte*outBlock)const;
voidProcessBlock(byte*inoutBlock)const;
enum{KEYLENGTH=24,BLOCKSIZE=8};
unsignedintBlockSize()const{returnBLOCKSIZE;}
private:
DESd1,e,d2;
};
NAMESPACE_END
#endif
des.cpp文件:
//des.cpp-modifiedbyWeiDaifrom:
/*
*
*circa1987,'s1977
*publicdomaincode.,but
*theactualencrypt/
*Outerbridge'sDEScodeasprintedinSchneier's"AppliedCryptography."
*
*Thiscodeisinthepublicdomain.Iwouldappreciatebugreportsand
*enhancements.
*
*PhilKarnKA9Q,[email protected],August1994.
*/
#include"pch.h"
#include"misc.h"
#include"des.h"
NAMESPACE_BEGIN(CryptoPP)
/*
*Threeofthesetables,theinitialpermutation,thefinal
*,areregularenoughthat
*forspeed,wehard-codethem.They'rehereforreferenceonly.
*Also,,gensp.c,
*tobuildthecombinedSPbox,Spbox[].They'realsoherejust
*forreference.
*/
#ifdefnotdef
/*initialpermutationIP*/
staticbyteip[]={
58,50,42,34,26,18,10,2,
60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,
64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,
59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,
63,55,47,39,31,23,15,7
};
/*finalpermutationIP^-1*/
staticbytefp[]={
40,8,48,16,56,24,64,32,
39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41,9,49,17,57,25
};
/*expansionoperationmatrix*/
staticbyteei[]={
32,1,2,3,4,5,
4,5,6,7,8,9,
8,9,10,11,12,13,
12,13,14,15,16,17,
16,17,18,19,20,21,
20,21,22,23,24,25,
24,25,26,27,28,29,
28,29,30,31,32,1
};
/*The(in)famousS-boxes*/
staticbytesbox[8][64]={
/*S1*/
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
/*S2*/
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
/*S3*/
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
/*S4*/
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
/*S5*/
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
/*S6*/
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
/*S7*/
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
/*S8*/
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
};
/*32--boxes*/
staticbytep32i[]={
16,7,20,21,
29,12,28,17,
1,15,23,26,
5,18,31,10,
2,8,24,14,
32,27,3,9,
19,13,30,6,
22,11,4,25
};
#endif
/*permutedchoicetable(key)*/
staticconstbytepc1[]={
57,49,41,33,25,17,9,
1,58,50,42,34,26,18,
10,2,59,51,43,35,27,
19,11,3,60,52,44,36,
63,55,47,39,31,23,15,
7,62,54,46,38,30,22,
14,6,61,53,45,37,29,
21,13,5,28,20,12,4
};
/*numberleftrotationsofpc1*/
staticconstbytetotrot[]={
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
};
/*permutedchoicekey(table)*/
staticconstbytepc2[]={
14,17,11,24,1,5,
3,28,15,6,21,10,
23,19,12,4,26,8,
16,7,27,20,13,2,
41,52,31,37,47,55,
30,40,51,45,33,48,
44,49,39,56,34,53,
46,42,50,36,29,32
};
/*EndofDES-definedtables*/
/*bit0isleft-mostinbyte*/
staticconstintbytebit[]={
0200,0100,040,020,010,04,02,01
};
/*Setkey(initializekeyschelearray)*/
DES::DES(constbyte*key,CipherDirdir)
:k(32)
{
SecByteBlockbuffer(56+56+8);
byte*constpc1m=buffer;/*placetomodifypc1into*/
byte*constpcr=pc1m+56;/*placetorotatepc1into*/
byte*constks=pcr+56;
registerinti,j,l;
intm;
for(j=0;j<56;j++){/*convertpc1tobitsofkey*/
l=pc1[j]-1;/*integerbitlocation*/
m=l&07;/*findbit*/
pc1m[j]=(key[l>>3]&/*findwhichkeybytelisin*/
bytebit[m])/*andwhichbitofthatbyte*/
?1:0;/*andstore1-bitresult*/
}
for(i=0;i<16;i++){/*keychunkforeachiteration*/
memset(ks,0,8);/*Clearkeyschele*/
for(j=0;j<56;j++)/*rotatepc1therightamount*/
pcr[j]=pc1m[(l=j+totrot[i])<(j<28?28:56)?l:l-28];
/**/
for(j=0;j<48;j++){/*selectbitsindivially*/
/*checkbitthatgoestoks[j]*/
if(pcr[pc2[j]-1]){
/*maskitinifit'sthere*/
l=j%6;
ks[j/6]|=bytebit[l]>>2;
}
}
/*Nowconverttoodd/eveninterleavedformforuseinF*/
k[2*i]=((word32)ks[0]<<24)
|((word32)ks[2]<<16)
|((word32)ks[4]<<8)
|((word32)ks[6]);
k[2*i+1]=((word32)ks[1]<<24)
|((word32)ks[3]<<16)
|((word32)ks[5]<<8)
|((word32)ks[7]);
}
if(dir==DECRYPTION)//reversekeyscheleorder
for(i=0;i<16;i+=2)
{
std::swap(k[i],k[32-2-i]);
std::swap(k[i+1],k[32-1-i]);
}
}
/**/
/*Ccodeonlyinportableversion*/
//RichardOuterbridge'sinitialpermutationalgorithm
/*
inlinevoidIPERM(word32&left,word32&right)
{
word32work;
work=((left>>4)^right)&0x0f0f0f0f;
right^=work;
left^=work<<4;
work=((left>>16)^right)&0xffff;
right^=work;
left^=work<<16;
work=((right>>2)^left)&0x33333333;
left^=work;
right^=(work<<2);
work=((right>>8)^left)&0xff00ff;
left^=work;
right^=(work<<8);
right=rotl(right,1);
work=(left^right)&0xaaaaaaaa;
left^=work;
right^=work;
left=rotl(left,1);
}
inlinevoidFPERM(word32&left,word32&right)
{
word32work;
right=rotr(right,1);
work=(left^right)&0xaaaaaaaa;
left^=work;
right^=work;
left=rotr(left,1);
work=((left>>8)^right)&0xff00ff;
right^=work;
left^=work<<8;
work=((left>>2)^right)&0x33333333;
right^=work;
left^=work<<2;
work=((right>>16)^left)&0xffff;
left^=work;
right^=work<<16;
work=((right>>4)^left)&0x0f0f0f0f;
left^=work;
right^=work<<4;
}
*/
//WeiDai''sinitialpermutation
//algorithm,
//(likeinMSVC)
inlinevoidIPERM(word32&left,word32&right)
{
word32work;
right=rotl(right,4U);
work=(left^right)&0xf0f0f0f0;
left^=work;
right=rotr(right^work,20U);
work=(left^right)&0xffff0000;
left^=work;
right=rotr(right^work,18U);
work=(left^right)&0x33333333;
left^=work;
right=rotr(right^work,6U);
work=(left^right)&0x00ff00ff;
left^=work;
right=rotl(right^work,9U);
work=(left^right)&0xaaaaaaaa;
left=rotl(left^work,1U);
right^=work;
}
inlinevoidFPERM(word32&left,word32&right)
{
word32work;
right=rotr(right,1U);
work=(left^right)&0xaaaaaaaa;
right^=work;
left=rotr(left^work,9U);
work=(left^right)&0x00ff00ff;
right^=work;
left=rotl(left^work,6U);
work=(left^right)&0x33333333;
right^=work;
left=rotl(left^work,18U);
work=(left^right)&0xffff0000;
right^=work;
left=rotl(left^work,20U);
work=(left^right)&0xf0f0f0f0;
right^=work;
left=rotr(left^work,4U);
}
//
voidDES::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
word32l,r,work;
#ifdefIS_LITTLE_ENDIAN
l=byteReverse(*(word32*)inBlock);
r=byteReverse(*(word32*)(inBlock+4));
#else
l=*(word32*)inBlock;
r=*(word32*)(inBlock+4);
#endif
IPERM(l,r);
constword32*kptr=k;
for(unsignedi=0;i<8;i++)
{
work=rotr(r,4U)^kptr[4*i+0];
l^=Spbox[6][(work)&0x3f]
^Spbox[4][(work>>8)&0x3f]
^Spbox[2][(work>>16)&0x3f]
^Spbox[0][(work>>24)&0x3f];
work=r^kptr[4*i+1];
l^=Spbox[7][(work)&0x3f]
^Spbox[5][(work>>8)&0x3f]
^Spbox[3][(work>>16)&0x3f]
^Spbox[1][(work>>24)&0x3f];
work=rotr(l,4U)^kptr[4*i+2];
r^=Spbox[6][(work)&0x3f]
^Spbox[4][(work>>8)&0x3f]
^Spbox[2][(work>>16)&0x3f]
^Spbox[0][(work>>24)&0x3f];
work=l^kptr[4*i+3];
r^=Spbox[7][(work)&0x3f]
^Spbox[5][(work>>8)&0x3f]
^Spbox[3][(work>>16)&0x3f]
^Spbox[1][(work>>24)&0x3f];
}
FPERM(l,r);
#ifdefIS_LITTLE_ENDIAN
*(word32*)outBlock=byteReverse(r);
*(word32*)(outBlock+4)=byteReverse(l);
#else
*(word32*)outBlock=r;
*(word32*)(outBlock+4)=l;
#endif
}
voidDES_EDE_Encryption::ProcessBlock(byte*inoutBlock)const
{
e.ProcessBlock(inoutBlock);
d.ProcessBlock(inoutBlock);
e.ProcessBlock(inoutBlock);
}
voidDES_EDE_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
e.ProcessBlock(inBlock,outBlock);
d.ProcessBlock(outBlock);
e.ProcessBlock(outBlock);
}
voidDES_EDE_Decryption::ProcessBlock(byte*inoutBlock)const
{
d.ProcessBlock(inoutBlock);
e.ProcessBlock(inoutBlock);
d.ProcessBlock(inoutBlock);
}
voidDES_EDE_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
d.ProcessBlock(inBlock,outBlock);
e.ProcessBlock(outBlock);
d.ProcessBlock(outBlock);
}
voidTripleDES_Encryption::ProcessBlock(byte*inoutBlock)const
{
e1.ProcessBlock(inoutBlock);
d.ProcessBlock(inoutBlock);
e2.ProcessBlock(inoutBlock);
}
voidTripleDES_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
e1.ProcessBlock(inBlock,outBlock);
d.ProcessBlock(outBlock);
e2.ProcessBlock(outBlock);
}
voidTripleDES_Decryption::ProcessBlock(byte*inoutBlock)const
{
d1.ProcessBlock(inoutBlock);
e.ProcessBlock(inoutBlock);
d2.ProcessBlock(inoutBlock);
}
voidTripleDES_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const
{
d1.ProcessBlock(inBlock,outBlock);
e.ProcessBlock(outBlock);
d2.ProcessBlock(outBlock);
}
NAMESPACE_END
程序運行如下:
Ⅱ DES加密解密
用文件夾加密超級大師加密電腦中重要的文件是最安全
文件夾加密超級大師
強大易用的加密軟體,具有文件加密、文件夾加密、數據粉碎、徹底隱藏硬碟分區、禁止或只讀使用USB設備等功能。
文件夾加密和文件加密時有最快的加密速度,加密的文件和加密的文件夾有最高的加密強度,並且防刪除、防復制、防移動。
還有方便的加密文件夾和加密文件的打開功能(臨時解密),讓您每次使用加密文件夾或加密文件後不用重新加密!
實用的數據粉碎刪除和硬碟分區徹底隱藏、禁止使用USB設備、只讀使用U盤和移動硬碟等安全輔助功
能使文件夾加密超級大師成為一款不可思議的文件加密軟體和文件夾加密軟體。
Ⅲ DES演算法是屬於對稱加密演算法嗎
是的,
最著名的保密密鑰或對稱密鑰加密演算法DES(Data Encryption Standard)是由IBM公司在70年代發展起來的,並經過政府的加密標准篩選後,於1976年11月被美國政府採用,DES隨後被美國國家標准局和美國國家標准協會(American National Standard Institute, ANSI) 承認。
DES使用56位密鑰對64位的數據塊進行加密,並對64位的數據塊進行16輪編碼。與每輪編碼時,一個48位的「每輪」密鑰值由56位的完整密鑰得出來。DES用軟體進行解碼需要用很長時間,而用硬體解碼速度非常快,但幸運的是當時大多數黑客並沒有足夠的設備製造出這種硬體設備。在1977年,人們估計要耗資兩千萬美元才能建成一個專門計算機用於DES的解密,而且需要12個小時的破解才能得到結果。所以,當時DES被認為是一種十分強壯的加密方法。
但是,當今的計算機速度越來越快了,製造一台這樣特殊的機器的花費已經降到了十萬美元左右,所以用它來保護十億美元的銀行間線纜時,就會仔細考慮了。另一個方面,如果只用它來保護一台伺服器,那麼DES確實是一種好的辦法,因為黑客絕不會僅僅為入侵一個伺服器而花那麼多的錢破解DES密文。由於現在已經能用二十萬美圓製造一台破譯DES的特殊的計算機,所以現在再對要求「強壯」加密的場合已經不再適用了。
三重DES
因為確定一種新的加密法是否真的安全是極為困難的,而且DES的唯一密碼學缺點,就是密鑰長度相對比較短,所以人們並沒有放棄使用DES,而是想出了一個解決其長度問題的方法,即採用三重DES。這種方法用兩個密鑰對明文進行三次加密,假設兩個密鑰是K1和K2,其演算法的步驟如圖5.9所示:
1. 用密鑰K1進行DEA加密。
2. 用K2對步驟1的結果進行DES解密。
3. 用步驟2的結果使用密鑰K1進行DES加密。
這種方法的缺點,是要花費原來三倍時間,從另一方面來看,三重DES的112位密鑰長度是很「強壯」的加密方式了
Ⅳ des和rsa屬於什麼加密技術
RAS:不對稱加密演算法
不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加
Ⅳ DES加密演算法
特點
分組比較短、密鑰太短、密碼生命周期短、運算速度較慢。
編輯本段基本原理
入口參數有三個:key、data、mode。 key為加密解密使用的密鑰,data為加密解密的數據,mode為其工作模式。當模式為加密模式時,明文按照64位進行分組,形成明文組,key用於對數據加密,當模式為解密模式時,key用於對數據解密。實際運用中,密鑰只用到了64位中的56位,這樣才具有高的安全性。 DES( Data Encryption Standard)演算法,於1977年得到美國政府的正式許可,是一種用56位密鑰來加密64位數據的方法。雖然56位密鑰的DES演算法已經風光不在,而且常有用Des加密的明文被破譯的報道,但是了解一下昔日美國的標准加密演算法總是有益的,而且目前DES演算法得到了廣泛的應用,在某些場合,仍然發揮著余熱。
編輯本段密鑰生成
取得密鑰
從用戶處取得一個64位(本文如未特指,均指二進制位))長的密碼key ,去除64位密碼中作為奇偶校驗位的第8、16、24、32、40、48、56、64位,剩下的56位作為有效輸入密鑰.
等分密鑰
表1. DES加密演算法
57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 50 44 36 表2. 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 把在1步中生成的56位輸入密鑰分成均等的A,B兩部分,每部分為28位,參照表1和表2把輸入密鑰的位值填入相應的位置. 按照表1所示A的第一位為輸入的64位密鑰的第57位,A的第2位為64位密鑰的第49位,...,依此類推,A的最後一位最後一位是64位密鑰的第36位。
密鑰移位
表3. i 1 2 3 4 5 6 7 8 DES加密演算法
ǿ 1 1 2 2 2 2 2 2 i 9 10 11 12 13 14 15 16 ǿ 1 2 2 2 2 2 2 1 DES演算法的密鑰是經過16次迭代得到一組密鑰的,把在1.1.2步中生成的A,B視為迭代的起始密鑰,表3顯示在第i次迭代時密鑰循環左移的位數. 比如在第1次迭代時密鑰循環左移1位,第3次迭代時密鑰循環左移2位. 第9次迭代時密鑰循環左移1位,第14次迭代時密鑰循環左移2位. 第一次迭代: A(1) = ǿ(1) A B(1) = ǿ(1) B DES加密演算法
第i次迭代: A(i) = ǿ(i) A(i-1) B(i) = ǿ(i) B(i-1)
實現介面函數的介紹
1 int des(char *data, char *key,int readlen) 參數: 1.存放待加密明文的內存指針(長度為readlen,可能經過填充; 2.存放用戶輸入的密鑰內存的指針 3.待加密明文的長度(8位元組的倍數) 功能: 生成加密密鑰,把待加密的明文數據分割成64位的塊,逐塊完成16次迭代加密,密文存放在data所指向的內存中. 2 int Ddes(char *data, char *key,int readlen) 參數: 1.存放待解密文的內存指針(長度為readlen,可能經過填充; 2.存放用戶輸入的密鑰內存的指針 3.待解密文的長度( 8位元組的倍數) 功能: 生成解密密鑰,把待解密文分割成64位的塊,逐塊完成16次迭代解密,解密後的明文存放在data所指向的內存中. 3 int des3(char *data, char *key, int n ,int readlen) 參數: 1.存放待加密明文的內存指針(長度為readlen,可能經過填充; 2.存放用戶輸入的密鑰內存的指針 DES加密演算法
3.用戶指定進行多少層加密 4.待加密明文的長度(8位元組的倍數) 功能: 生成加密密鑰,把待加密的明文分割成64位的塊,把第i-1層加密後的密文作為第i層加密的明文輸入,根據用戶指定的加密層數進行n層加密,最終生成的密文存放在data所指向的內存中. 說明: 用戶僅僅輸入一條密鑰,所有的加密密鑰都是由這條密鑰生成. 4 int Ddes3(char *data, char*key, int n ,int readlen) 參數: 1.存放待解密文的內存指針(長度為readlen,可能經過填充; 2.存放用戶輸入的密鑰內存的指針 3.用戶指定進行多少層解密 4.待解密文的長度(8位元組的倍數) 功能: 生成解密密鑰,把待解密文分割成64位的塊,把第i-1層解密後的"明文"作為第i層解密的密文輸入,根據用戶指定的解密層數進行n層解密,最終生成的明文存放在data所指向的內存中. 說明: 用戶僅僅輸入一條密鑰,所有的解密密鑰都是由這條密鑰生成. 5 int desN(char*data,char**key,int n_key,int readlen) 參數: 1.存放待加密明文的內存指針(長度為readlen,可能經過填充; 2.存放用戶輸入的密鑰內存的指針 3.用戶指定了多少條密鑰 4.待加密明文的長度(8位元組的倍數) 功能: DES加密演算法生成加密密鑰,把待加密的明文分割成64位的塊,把第i-1層加密後的密文作為第i層加密的明文輸入,根據用戶指定的加密層數進行n層加密,最終生成的密文存放在data所指向的內存中. 說明: 這里用戶通過輸入的密鑰條數決定加密的層數,每輪16次迭代加密所使用的加密密鑰是由用戶自定的對應密鑰生成. 6 int DdesN(char*data,char**key,intn_key,int readlen) 參數: 1.存放待解密文的內存指針(長度為readlen,可能經過填充; 2.存放用戶輸入的密鑰內存的指針 3.用戶指定了多少條密鑰 4.待解密文的長度(8位元組的倍數) 功能: 生成解密密鑰,把待解密文分割成64位的塊,把第i-1層解密後的」明文」作為第i層解密的密文輸入,根據用戶指定的解密層數進行n層解密,最終生成的明文存放在data所指向的內存中. 說明: 這里用戶通過輸入的密鑰條數決定解密的層數,每輪16次迭代加密所使用的解密密鑰是由用戶自定的對應密鑰生成. DES加密演算法-實現的介紹 利用演算法核心代碼封裝的介面函數編寫了一個針對文本文件的加密解密工具。選擇把密文以16進制的形式寫入文件的方法.當然也可以直接寫入文件. 例: DES加密演算法
密文為:12345678 在內存中顯示為: 31 32 33 34 35 36 37 38 那麼就把以3132333435363738的形式寫入文件. 為了解密的方便,密文中的每個位元組用兩個位元組表示,也即在內存中顯示為0x9A的內容,就以9A的形式寫入文件中.當內存中顯示的內容為0x0?(?代表0~F)形式時,需要以0?的形式寫入文件. 這樣可以避開前面提及的問題,只是在解密時先按照兩兩組合的原則,順序把從文件中讀取的數據轉換成待解的密文. 例: 讀出的數據是: 3132333435363738 那麼復原的過程: 31->1 32->2 33->3 …. 38->8 最終得真正的密文12345678,這樣就可以調用DES演算法解密函數從密文得到明文. DES演算法是對固定大小(64位)的數據塊進行加密解密操作的,對於那些不夠64位的數據塊需要採用填充機制補位到64位長,為了方便使用,數據位的填充是對用戶而言是透明的,利用該工具進行加密解密操作時,用戶只需輸入操作的類型、讀取數據的文件名、寫入操作結果的文件名、密鑰等信息.
編輯本段操作思路
#define READFILESIZE 512 步驟: 1.從文件中讀取READFILESIZE個位元組的數據 2.,如果從文件中讀出的數據少於READFILESIZE個,以0補足,然後根據用戶指定的類型對這READFILESIZE個位元組的數據進行操作. 3.判斷文件是否結束,沒有則執行步驟1 4.把加密後的文件實際長度添加到密文的末尾 5.結束 採用一次只從文件讀取READFILESIZE個位元組是在為了防止由於需要加密或解密的文件太大導致內存不夠的情況出現。 DES加密演算法-注意事項 DES演算法的加密密鑰是根據用戶輸入的密碼生成的,該演算法把64位密碼中的第8位、第16位、第24位、第32位、第40位、第48位、第56位、第64位作為奇偶校驗位,在計算密鑰時要忽略這8位.如果輸入的密碼只是在這8位上有區別的話,那麼操作後的結果將是一樣的. 例: 輸入的密碼為wuzhenll,密鑰的16進製表示為77 75 7A 68 65 6E 6C 6C 任意改變這64位數據的奇偶校驗位,可以得到16個不同的密碼, 把8個奇偶檢驗位全取反後: w->v u->t z->{ h->i e->d n->o l->m 形成新密碼:vt{idomm 表面上新密碼和原密碼迥然不同,但是由於他們僅在奇偶校驗位上有區別,所以用這兩個密碼進行加密解密操作得到的結果是一樣的. 筆者建議使用安全系數較高的多密鑰加密解密方案. 此外用戶輸入的密碼的長度不受限制,當輸入的密碼長度為0時,使用預設64位密碼;當輸入的密碼長度大於8位元組時,輸入密碼的前8個位元組為有效密碼. 該工具提供6種不同的操作類型: 1:一層加密; 2:一層解密; 3:N層單密鑰加密; 4:N層單密鑰解密; 5:N層多密鑰加密; 6:N層多密鑰解密; 這六種操作是對稱使用的,例如:加密明文時選擇一層加密,解密時對密文使用一層解密
Ⅵ DES加密演算法 優點缺點
優點:DES加密演算法密鑰只用到了64位中的56位,這樣具有高的安全性。
缺點:分組比較短、密鑰太短、密碼生命周期短、運算速度較慢。
Ⅶ 什麼是DES加密
DES演算法具有極高安全性,到目前為止,除了用窮舉搜索法對DES演算法進行攻擊外,還沒有發現更有效的辦法。而56位長的密鑰的窮舉空間為256,這意味著如果一台計算機的速度是每一秒種檢測一百萬個密鑰,則它搜索完全部密鑰就需要將近2285年的時間
可以使用加密軟體對數據進行加密
如文件夾加密超級大師
採用先進的加密演算法,使您的文件加密後,真正的達到超高的加密強度,讓您的加密文件無懈可擊,沒有密碼無法解密。
五種加密方法:
閃電加密速度快,對文件夾沒有大小限制,無論多大都可以在幾秒內加密完畢。
隱藏加密後,數據被徹底隱藏,只能通過軟體打開或解密。
金鑽加密是把文件夾加密成一個加密文件, 打開或解密時需要輸入密碼。特點是安全性極高,沒有正確密碼任何人無法打開或解密。適用於比較小一點的重要文件存放的文件夾。
全面加密是把文件夾裡面的所有文件加密成加密文件, 打開文件夾不需要密碼,但是打開裡面的每個文件都需要密碼。
移動加密是把數據加密成exe文件,可以移動到其他沒有安裝軟體的電腦上解密,也可以通過網路傳輸。
注意:金鑽加密,移動加密,全面加密忘記密碼無法解密,所以請您牢記密碼。
Ⅷ des演算法用來加密的密鑰有多少位
??DES使用56位密鑰對64位的數據塊進行加密,並對64位的數據塊進行16輪編碼。與每輪編碼時,一個48位的「每輪」密鑰值由56位的完整密鑰得出來。DES用軟體進行解碼需要用很長時間,而用硬體解碼速度非常快,但幸運的是當時大多數黑客並沒有足夠的設備製造出這種硬體設備。在1977年,人們估計要耗資兩千萬美元才能建成一個專門計算機用於DES的解密,而且需要12個小時的破解才能得到結果。所以,當時DES被認為是一種十分強壯的加密方法。
??但是,當今的計算機速度越來越快了,製造一台這樣特殊的機器的花費已經降到了十萬美元左右,所以用它來保護十億美元的銀行間線纜時,就會仔細考慮了。另一個方面,如果只用它來保護一台伺服器,那麼DES確實是一種好的辦法,因為黑客絕不會僅僅為入侵一個伺服器而花那麼多的錢破解DES密文。由於現在已經能用二十萬美圓製造一台破譯DES的特殊的計算機,所以現在再對要求「強壯」加密的場合已經不再適用了。
??三重DES
??因為確定一種新的加密法是否真的安全是極為困難的,而且DES的唯一密碼學缺點,就是密鑰長度相對比較短,所以人們並沒有放棄使用DES,而是想出了一個解決其長度問題的方法,即採用三重DES。這種方法用兩個密鑰對明文進行三次加密,假設兩個密鑰是K1和K2,其演算法的步驟如圖5.9所示:
??1. 用密鑰K1進行DEA加密。
??2. 用K2對步驟1的結果進行DES解密。
??3. 用步驟2的結果使用密鑰K1進行DES加密。
??這種方法的缺點,是要花費原來三倍時間,從另一方面來看,三重DES的112位密鑰長度是很「強壯」的加密方式了
Ⅸ des加密演算法流程圖
DES(Data Encryption Standard)滿足了國家標准局欲達到的4個目的:提供高質量的數據保護,防止數據未經授權的泄露和未被察覺的修改;具有相當高的復雜性,使得破譯的開銷超過可能獲得的利益,同時又要便於理解和掌握;
DES演算法把64位的明文輸入塊變為64位的密文輸出塊,它所使用的密鑰也是64位,首先,DES把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位,並進行前後置換(輸入的第58位換到第一位,第50位換到第2位,依此類推,最後一位是原來的第7位),最終由L0輸出左32位,R0輸出右32位,根據這個法則經過16次迭代運算後,得到L16、R16,將此作為輸入,進行與初始置換相反的逆置換,即得到密文輸出。
DES演算法的入口參數有三個:Key、Data、Mode。其中Key為8個位元組共64位,是DES演算法的工作密鑰;Data也為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密,如果Mode為加密,則用Key去把數據Data進行加密,生成Data的密碼形式作為DES的輸出結果;如Mode為解密,則用Key去把密碼形式的數據Data解密,還原為Data的明碼形式作為DES的輸出結果。在使用DES時,雙方預先約定使用的」密碼」即Key,然後用Key去加密數據;接收方得到密文後使用同樣的Key解密得到原數據,這樣便實現了安全性較高的數據傳輸。
Ⅹ des加密中的key是多少進制
二進制。
DES演算法為密碼體制中的對稱密碼體制,又被成為美國數據加密標准,是1972年美國IBM公司研製的對稱密碼體制加密演算法。
其密鑰長度為56位,明文按64位進行分組,將分組後的明文組和56位的密鑰按位替代或交換的方法形成密文組的加密方法。DES加密演算法特點:分組比較短、密鑰太短、密碼生命周期短、運算速度較慢。