當前位置:首頁 » 密碼管理 » dh加密演算法安全嗎

dh加密演算法安全嗎

發布時間: 2023-12-24 03:56:29

㈠ 簡要介紹DH密鑰交換演算法

姓名:朱睿琦

學號:15180288015

參考:https://ke..com/item/Diffie-Hellman/9827194?fr=aladdin

http://blog.csdn.net/fw0124/article/details/8462373

【嵌牛導讀】:隨著互聯網路的高速發展,計算機運算能力的提升,對信息的保密也有了更近一步的要求——不僅信息要保密,密鑰也要保密。DH(Diffie-Hellman)演算法就提供了使密鑰安全通過不安全網路的方法。

【嵌牛鼻子】:DH演算法,密鑰,網路信息安全

【嵌牛提問】:DH演算法是用來保護什麼在網路中的通信安全?DH密鑰交換的基本原理是什麼?

【嵌牛正文】:(1)、演算法描述

離散對數的概念:

原根 :如果 a 是素數 p 的一個原根,那麼數值:

a mod p , a^ 2 mod p ,…, a^( p-1) mod p

是各不相同的整數,且以某種排列方式組成了從 1 到 p-1 的所有整數。

離散對數 :如果對於一個整數 b 和素數 p 的一個原根 a ,可以找到一個唯一的指數 i ,使得:

b =( a的i次方) mod p 其中 0 ≦ i ≦ p-1

那麼指數 i 稱為 b 的以 a 為基數的模p的離散對數。

Diffie-Hellman演算法的有效性依賴於計算離散對數的難度,其含義是:當已知大素數 p 和它的一個原根 a 後,對給定的 b ,要計算 i ,被認為是很困難的,而給定 i 計算 b 卻相對容易。

Diffie-Hellman演算法:

假如用戶A和用戶B希望交換一個密鑰。

取素數 p 和整數 a , a 是 p 的一個原根,公開 a 和p。

A選擇隨機數XA< p ,並計算YA= a^ XA mod p。

B選擇隨機數XB< p ,並計算YB= a^ XB mod p。

每一方都將X保密而將Y公開讓另一方得到。

A計算密鑰的方式是:K=(YB) ^XA mod p

B計算密鑰的方式是:K=(YA) ^XB mod p

證明:

(YB)^ XA mod p = ( a^ XB mod p )^ XA mod p

= ( a^ XB)^ XA mod p = ( a^ XA) ^XB mod p (<-- 密鑰即為 a^(XA*XB) mod p )

=( a^ XA mod p )^ XB mod p = (YA) ^XB mod p

由於XA和XB是保密的,而第三方只有 p 、 a 、YB、YA可以利用,只有通過取離散對數來確定密鑰,但對於大的素數 p ,計算離散對數是十分困難的。

例子:

假如用戶Alice和用戶Bob希望交換一個密鑰。

取一個素數 p =97和97的一個原根 a =5。

Alice和Bob分別選擇秘密密鑰XA=36和XB=58,並計算各自的公開密鑰:

YA= a^ XA mod p =5^36 mod 97=50

YB= a^ XB mod p =5^58 mod 97=44

Alice和Bob交換了公開密鑰之後,計算共享密鑰如下:

Alice:K=(YB) ^XA mod p =44^36 mod 97=75

Bob:K=(YA) ^XB mod p =50^58 mod 97=75

(2)、安全性

當然,為了使這個例子變得安全,必須使用非常大的XA, XB 以及 p , 否則可以實驗所有的可能取值。(總共有最多97個這樣的值, 就算XA和XB很大也無濟於事)。

如果 p 是一個至少 300 位的質數,並且XA和XB至少有100位長, 那麼即使使用全人類所有的計算資源和當今最好的演算法也不可能從a, p 和a^(XA*XB) mod p 中計算出 XA*XB。

這個問題就是著名的離散對數問題。注意g則不需要很大, 並且在一般的實踐中通常是2或者5。

在最初的描述中,迪菲-赫爾曼密鑰交換本身並沒有提供通訊雙方的身份驗證服務,因此它很容易受到中間人攻擊。

一個中間人在信道的中央進行兩次迪菲-赫爾曼密鑰交換,一次和Alice另一次和Bob,就能夠成功的向Alice假裝自己是Bob,反之亦然。

而攻擊者可以解密(讀取和存儲)任何一個人的信息並重新加密信息,然後傳遞給另一個人。因此通常都需要一個能夠驗證通訊雙方身份的機制來防止這類攻擊。

有很多種安全身份驗證解決方案使用到了迪菲-赫爾曼密鑰交換。例如當Alice和Bob共有一個公鑰基礎設施時,他們可以將他們的返回密鑰進行簽名。

㈡ 常見加密演算法原理及概念

在安全領域,利用密鑰加密演算法來對通信的過程進行加密是一種常見的安全手段。利用該手段能夠保障數據安全通信的三個目標:

而常見的密鑰加密演算法類型大體可以分為三類:對稱加密、非對稱加密、單向加密。下面我們來了解下相關的演算法原理及其常見的演算法。

對稱加密演算法採用單密鑰加密,在通信過程中,數據發送方將原始數據分割成固定大小的塊,經過密鑰和加密演算法逐個加密後,發送給接收方;接收方收到加密後的報文後,結合密鑰和解密演算法解密組合後得出原始數據。由於加解密演算法是公開的,因此在這過程中,密鑰的安全傳遞就成為了至關重要的事了。而密鑰通常來說是通過雙方協商,以物理的方式傳遞給對方,或者利用第三方平台傳遞給對方,一旦這過程出現了密鑰泄露,不懷好意的人就能結合相應的演算法攔截解密出其加密傳輸的內容。

對稱加密演算法擁有著演算法公開、計算量小、加密速度和效率高得特定,但是也有著密鑰單一、密鑰管理困難等缺點。

常見的對稱加密演算法有:
DES:分組式加密演算法,以64位為分組對數據加密,加解密使用同一個演算法。
3DES:三重數據加密演算法,對每個數據塊應用三次DES加密演算法。
AES:高級加密標准演算法,是美國聯邦政府採用的一種區塊加密標准,用於替代原先的DES,目前已被廣泛應用。
Blowfish:Blowfish演算法是一個64位分組及可變密鑰長度的對稱密鑰分組密碼演算法,可用來加密64比特長度的字元串。

非對稱加密演算法採用公鑰和私鑰兩種不同的密碼來進行加解密。公鑰和私鑰是成對存在,公鑰是從私鑰中提取產生公開給所有人的,如果使用公鑰對數據進行加密,那麼只有對應的私鑰才能解密,反之亦然。
下圖為簡單非對稱加密演算法的常見流程:

發送方Bob從接收方Alice獲取其對應的公鑰,並結合相應的非對稱演算法將明文加密後發送給Alice;Alice接收到加密的密文後,結合自己的私鑰和非對稱演算法解密得到明文。這種簡單的非對稱加密演算法的應用其安全性比對稱加密演算法來說要高,但是其不足之處在於無法確認公鑰的來源合法性以及數據的完整性。
非對稱加密演算法具有安全性高、演算法強度負復雜的優點,其缺點為加解密耗時長、速度慢,只適合對少量數據進行加密,其常見演算法包括:
RSA :RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰,可用於加密,也能用於簽名。
DSA :數字簽名演算法,僅能用於簽名,不能用於加解密。
DSS :數字簽名標准,技能用於簽名,也可以用於加解密。
ELGamal :利用離散對數的原理對數據進行加解密或數據簽名,其速度是最慢的。

單向加密演算法常用於提取數據指紋,驗證數據的完整性。發送者將明文通過單向加密演算法加密生成定長的密文串,然後傳遞給接收方。接收方在收到加密的報文後進行解密,將解密獲取到的明文使用相同的單向加密演算法進行加密,得出加密後的密文串。隨後將之與發送者發送過來的密文串進行對比,若發送前和發送後的密文串相一致,則說明傳輸過程中數據沒有損壞;若不一致,說明傳輸過程中數據丟失了。單向加密演算法只能用於對數據的加密,無法被解密,其特點為定長輸出、雪崩效應。常見的演算法包括:MD5、sha1、sha224等等,其常見用途包括:數字摘要、數字簽名等等。

密鑰交換IKE(Internet Key Exchange)通常是指雙方通過交換密鑰來實現數據加密和解密,常見的密鑰交換方式有下面兩種:
1、公鑰加密,將公鑰加密後通過網路傳輸到對方進行解密,這種方式缺點在於具有很大的可能性被攔截破解,因此不常用;
2、Diffie-Hellman,DH演算法是一種密鑰交換演算法,其既不用於加密,也不產生數字簽名。DH演算法的巧妙在於需要安全通信的雙方可以用這個方法確定對稱密鑰。然後可以用這個密鑰進行加密和解密。但是注意,這個密鑰交換協議/演算法只能用於密鑰的交換,而不能進行消息的加密和解密。雙方確定要用的密鑰後,要使用其他對稱密鑰操作加密演算法實際加密和解密消息。DH演算法通過雙方共有的參數、私有參數和演算法信息來進行加密,然後雙方將計算後的結果進行交換,交換完成後再和屬於自己私有的參數進行特殊演算法,經過雙方計算後的結果是相同的,此結果即為密鑰。
如:

在整個過程中,第三方人員只能獲取p、g兩個值,AB雙方交換的是計算後的結果,因此這種方式是很安全的。

公鑰基礎設施是一個包括硬體、軟體、人員、策略和規程的集合,用於實現基於公鑰密碼機制的密鑰和證書的生成、管理、存儲、分發和撤銷的功能,其組成包括:簽證機構CA、注冊機構RA、證書吊銷列表CRL和證書存取庫CB。
PKI採用證書管理公鑰,通過第三方可信任CA中心,把用戶的公鑰和其他用戶信息組生成證書,用於驗證用戶的身份。
公鑰證書是以數字簽名的方式聲明,它將公鑰的值綁定到持有對應私鑰的個人、設備或服務身份。公鑰證書的生成遵循X.509協議的規定,其內容包括:證書名稱、證書版本、序列號、演算法標識、頒發者、有效期、有效起始日期、有效終止日期、公鑰 、證書簽名等等的內容。

CA證書認證的流程如下圖,Bob為了向Alice證明自己是Bob和某個公鑰是自己的,她便向一個Bob和Alice都信任的CA機構申請證書,Bob先自己生成了一對密鑰對(私鑰和公鑰),把自己的私鑰保存在自己電腦上,然後把公鑰給CA申請證書,CA接受申請於是給Bob頒發了一個數字證書,證書中包含了Bob的那個公鑰以及其它身份信息,當然,CA會計算這些信息的消息摘要並用自己的私鑰加密消息摘要(數字簽名)一並附在Bob的證書上,以此來證明這個證書就是CA自己頒發的。Alice得到Bob的證書後用CA的證書(自簽署的)中的公鑰來解密消息摘要,隨後將摘要和Bob的公鑰發送到CA伺服器上進行核對。CA在接收到Alice的核對請求後,會根據Alice提供的信息核對Bob的證書是否合法,如果確認合法則回復Alice證書合法。Alice收到CA的確認回復後,再去使用從證書中獲取的Bob的公鑰加密郵件然後發送給Bob,Bob接收後再以自己的私鑰進行解密。

㈢ 常見的三種加密演算法及區別

1.常見的三種加密演算法及區別
2.加密演算法在HTTPS中的應用
3.MD5的實現原理

簡介:
消息摘要演算法的主要特徵是加密過程 不需要密鑰 ,並且經過加密的數據 無法被解密

特點:
無論輸入的消息有多長,計算出來的消息摘要的 長度總是固定
一般地,只要輸入的 消息不同 ,對其進行摘要以後產生的 摘要消息也必不相同 ,但 相同的輸入必會產生相同的輸出

應用場景:
消息摘要演算法主要應用在「數字簽名」領域,作為對明文的摘要演算法

比較:
都是從MD4發展而來,它們的結構和強度等特性有很多相似之處

簡介:
對稱加密指加密和解密使用 相同密鑰 的加密演算法
特點:
對稱加密演算法的特點是演算法公開、 計算量小 加密速度快 、加密效率高。不足之處是,交易雙方都使用 同樣鑰匙 ,安全性得不到保證。
應用:
數據傳輸中的加密,防竊取

比較:
AES彌補了DES很多的不足,支持秘鑰變長,分組變長,更加的安全,對內存要求非常低

簡介:
非對稱加密演算法需要兩個密鑰:公開密鑰和私有密鑰。公鑰與私鑰是一對,如果用 公鑰對數據進行加密,只有用對應的私鑰才能解密。用私鑰進行加密,只有對應的公鑰才能進行解密
特點:
演算法強度復雜、安全性依賴於演算法與密鑰。但是由於其演算法復雜,而使得加密解密 速度沒有對稱加密解密的速度快
應用場景:
數字簽名、秘鑰傳輸加密

比較:
使用RSA,可以進行加密和簽名的密鑰對。使用DH,只執行加密,沒有簽名機制。
ECC和 RSA 相比,在許多方面都有對絕對的優勢

㈣ 常見的加密演算法、原理、優缺點、用途

在安全領域,利用密鑰加密演算法來對通信的過程進行加密是一種常見的安全手段。利用該手段能夠保障數據安全通信的三個目標:

而常見的密鑰加密演算法類型大體可以分為三類:對稱加密、非對稱加密、單向加密。下面我們來了解下相關的演算法原理及其常見的演算法。

在加密傳輸中最初是採用對稱密鑰方式,也就是加密和解密都用相同的密鑰。

1.對稱加密演算法採用單密鑰加密,在通信過程中,數據發送方將原始數據分割成固定大小的塊,經過密鑰和加密演算法逐個加密後,發送給接收方

2.接收方收到加密後的報文後,結合解密演算法使用相同密鑰解密組合後得出原始數據。

圖示:

非對稱加密演算法採用公鑰和私鑰兩種不同的密碼來進行加解密。公鑰和私鑰是成對存在,公鑰是從私鑰中提取產生公開給所有人的,如果使用公鑰對數據進行加密,那麼只有對應的私鑰(不能公開)才能解密,反之亦然。N 個用戶通信,需要2N個密鑰。

非對稱密鑰加密適合對密鑰或身份信息等敏感信息加密,從而在安全性上滿足用戶的需求。

1.甲使用乙的公鑰並結合相應的非對稱演算法將明文加密後發送給乙,並將密文發送給乙。
2.乙收到密文後,結合自己的私鑰和非對稱演算法解密得到明文,得到最初的明文。

圖示:

單向加密演算法只能用於對數據的加密,無法被解密,其特點為定長輸出、雪崩效應(少量消息位的變化會引起信息摘要的許多位變化)。

單向加密演算法常用於提取數據指紋,驗證數據的完整性、數字摘要、數字簽名等等。

1.發送者將明文通過單向加密演算法加密生成定長的密文串,然後傳遞給接收方。

2.接收方將用於比對驗證的明文使用相同的單向加密演算法進行加密,得出加密後的密文串。

3.將之與發送者發送過來的密文串進行對比,若發送前和發送後的密文串相一致,則說明傳輸過程中數據沒有損壞;若不一致,說明傳輸過程中數據丟失了。

圖示:

MD5、sha1、sha224等等

密鑰交換IKE(Internet Key Exchange)通常是指雙方通過交換密鑰來實現數據加密和解密

常見的密鑰交換方式有下面兩種:

將公鑰加密後通過網路傳輸到對方進行解密,這種方式缺點在於具有很大的可能性被攔截破解,因此不常用

DH演算法是一種密鑰交換演算法,其既不用於加密,也不產生數字簽名。

DH演算法通過雙方共有的參數、私有參數和演算法信息來進行加密,然後雙方將計算後的結果進行交換,交換完成後再和屬於自己私有的參數進行特殊演算法,經過雙方計算後的結果是相同的,此結果即為密鑰。

如:

安全性

在整個過程中,第三方人員只能獲取p、g兩個值,AB雙方交換的是計算後的結果,因此這種方式是很安全的。

答案:使用公鑰證書

公鑰基礎設施是一個包括硬體、軟體、人員、策略和規程的集合

用於實現基於公鑰密碼機制的密鑰和證書的生成、管理、存儲、分發和撤銷的功能

簽證機構CA、注冊機構RA、證書吊銷列表CRL和證書存取庫CB。

公鑰證書是以數字簽名的方式聲明,它將公鑰的值綁定到持有對應私鑰的個人、設備或服務身份。公鑰證書的生成遵循X.509協議的規定,其內容包括:證書名稱、證書版本、序列號、演算法標識、頒發者、有效期、有效起始日期、有效終止日期、公鑰 、證書簽名等等的內容。

1.客戶A准備好要傳送的數字信息(明文)。(准備明文)

2.客戶A對數字信息進行哈希(hash)運算,得到一個信息摘要。(准備摘要)

3.客戶A用CA的私鑰(SK)對信息摘要進行加密得到客戶A的數字簽名,並將其附在數字信息上。(用私鑰對數字信息進行數字簽名)

4.客戶A隨機產生一個加密密鑰(DES密鑰),並用此密鑰對要發送的信息進行加密,形成密文。 (生成密文)

5.客戶A用雙方共有的公鑰(PK)對剛才隨機產生的加密密鑰進行加密,將加密後的DES密鑰連同密文一起傳送給乙。(非對稱加密,用公鑰對DES密鑰進行加密)

6.銀行B收到客戶A傳送過來的密文和加過密的DES密鑰,先用自己的私鑰(SK)對加密的DES密鑰進行解密,得到DES密鑰。(用私鑰對DES密鑰解密)

7.銀行B然後用DES密鑰對收到的密文進行解密,得到明文的數字信息,然後將DES密鑰拋棄(即DES密鑰作廢)。(解密文)

8.銀行B用雙方共有的公鑰(PK)對客戶A的數字簽名進行解密,得到信息摘要。銀行B用相同的hash演算法對收到的明文再進行一次hash運算,得到一個新的信息摘要。(用公鑰解密數字簽名)

9.銀行B將收到的信息摘要和新產生的信息摘要進行比較,如果一致,說明收到的信息沒有被修改過。(對比信息摘要和信息)

答案是沒法保證CA的公鑰沒有被篡改。通常操作系統和瀏覽器會預制一些CA證書在本地。所以發送方應該去那些通過認證的CA處申請數字證書。這樣是有保障的。

但是如果系統中被插入了惡意的CA證書,依然可以通過假冒的數字證書發送假冒的發送方公鑰來驗證假冒的正文信息。所以安全的前提是系統中不能被人插入非法的CA證書。

END

㈤ 如何改進DH演算法,使其抵禦中間人攻擊

改進DH演算法使其抵禦中間人攻擊的方法是:在途中根據需要修改它們的密文,使得A和B都不知道他們在和C共享通信。

DH演算法的缺點是沒有提供雙方身份的任何信息.。它是計算密集性的,因此容易遭受阻塞性攻擊,即對手請求大量的密鑰。受攻擊者花費了相對多的計算資源來求解無用的冪系數而不是在做真正的工作.,沒辦法防止重演攻擊。

容易遭受中間人的攻擊,第三方C在和A通信時扮演B;和B通信時扮演A.A和B都與C協商了一個密鑰,然後C就可以監聽和傳遞通信量。



(5)dh加密演算法安全嗎擴展閱讀:

基於原根的定義及性質,可以定義Diffie-Hellman密鑰交換演算法.該演算法描述如下:

1、有兩個全局公開的參數,一個素數q和一個整數a,a是q的一個原根。

2、假設用戶A和B希望交換一個密鑰,用戶A選擇一個作為私有密鑰的隨機數XA(XA<q),並計算公開密鑰YA=a^XA mod q。A對XA的值保密存放而使YA能被B公開獲得。類似地用戶B選擇一個私有的隨機數XB<q,並計算公開密鑰YB=a^XB mod q。B對XB的值保密存放而使YB能被A公開獲得。

3、用戶A產生共享秘密密鑰的計算方式是K = (YB)^XA mod q.同樣,用戶B產生共享秘密密鑰的計算是K = (YA)^XB mod q.這兩個計算產生相同的結果:

K = (YB)^XA mod q = (a^XB mod q)^XA mod q = (a^XB)^XA mod q = a^(XBXA) mod q = (a^XA)^XB mod q = (a^XA mod q)^XB mod q = (YA)^XB mod q 因此相當於雙方已經交換了一個相同的秘密密鑰。

㈥ 非對稱加密演算法 (RSA、DSA、ECC、DH)

非對稱加密需要兩個密鑰:公鑰(publickey) 和私鑰 (privatekey)。公鑰和私鑰是一對,如果用公鑰對數據加密,那麼只能用對應的私鑰解密。如果用私鑰對數據加密,只能用對應的公鑰進行解密。因為加密和解密用的是不同的密鑰,所以稱為非對稱加密。

非對稱加密演算法的保密性好,它消除了最終用戶交換密鑰的需要。但是加解密速度要遠遠慢於對稱加密,在某些極端情況下,甚至能比對稱加密慢上1000倍。

演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快。對稱密碼體制中只有一種密鑰,並且是非公開的,如果要解密就得讓對方知道密鑰。所以保證其安全性就是保證密鑰的安全,而非對稱密鑰體制有兩種密鑰,其中一個是公開的,這樣就可以不需要像對稱密碼那樣傳輸對方的密鑰了。這樣安全性就大了很多。

RSA、Elgamal、背包演算法、Rabin、D-H、ECC (橢圓曲線加密演算法)。使用最廣泛的是 RSA 演算法,Elgamal 是另一種常用的非對稱加密演算法。

收信者是唯一能夠解開加密信息的人,因此收信者手裡的必須是私鑰。發信者手裡的是公鑰,其它人知道公鑰沒有關系,因為其它人發來的信息對收信者沒有意義。

客戶端需要將認證標識傳送給伺服器,此認證標識 (可能是一個隨機數) 其它客戶端可以知道,因此需要用私鑰加密,客戶端保存的是私鑰。伺服器端保存的是公鑰,其它伺服器知道公鑰沒有關系,因為客戶端不需要登錄其它伺服器。

數字簽名是為了表明信息沒有受到偽造,確實是信息擁有者發出來的,附在信息原文的後面。就像手寫的簽名一樣,具有不可抵賴性和簡潔性。

簡潔性:對信息原文做哈希運算,得到消息摘要,信息越短加密的耗時越少。

不可抵賴性:信息擁有者要保證簽名的唯一性,必須是唯一能夠加密消息摘要的人,因此必須用私鑰加密 (就像字跡他人無法學會一樣),得到簽名。如果用公鑰,那每個人都可以偽造簽名了。

問題起源:對1和3,發信者怎麼知道從網上獲取的公鑰就是真的?沒有遭受中間人攻擊?

這樣就需要第三方機構來保證公鑰的合法性,這個第三方機構就是 CA (Certificate Authority),證書中心。

CA 用自己的私鑰對信息原文所有者發布的公鑰和相關信息進行加密,得出的內容就是數字證書。

信息原文的所有者以後發布信息時,除了帶上自己的簽名,還帶上數字證書,就可以保證信息不被篡改了。信息的接收者先用 CA給的公鑰解出信息所有者的公鑰,這樣可以保證信息所有者的公鑰是真正的公鑰,然後就能通過該公鑰證明數字簽名是否真實了。

RSA 是目前最有影響力的公鑰加密演算法,該演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰,即公鑰,而兩個大素數組合成私鑰。公鑰是可發布的供任何人使用,私鑰則為自己所有,供解密之用。

A 要把信息發給 B 為例,確定角色:A 為加密者,B 為解密者。首先由 B 隨機確定一個 KEY,稱之為私鑰,將這個 KEY 始終保存在機器 B 中而不發出來;然後,由這個 KEY 計算出另一個 KEY,稱之為公鑰。這個公鑰的特性是幾乎不可能通過它自身計算出生成它的私鑰。接下來通過網路把這個公鑰傳給 A,A 收到公鑰後,利用公鑰對信息加密,並把密文通過網路發送到 B,最後 B 利用已知的私鑰,就能對密文進行解碼了。以上就是 RSA 演算法的工作流程。

由於進行的都是大數計算,使得 RSA 最快的情況也比 DES 慢上好幾倍,無論是軟體還是硬體實現。速度一直是 RSA 的缺陷。一般來說只用於少量數據加密。RSA 的速度是對應同樣安全級別的對稱密碼演算法的1/1000左右。

比起 DES 和其它對稱演算法來說,RSA 要慢得多。實際上一般使用一種對稱演算法來加密信息,然後用 RSA 來加密比較短的公鑰,然後將用 RSA 加密的公鑰和用對稱演算法加密的消息發送給接收方。

這樣一來對隨機數的要求就更高了,尤其對產生對稱密碼的要求非常高,否則的話可以越過 RSA 來直接攻擊對稱密碼。

和其它加密過程一樣,對 RSA 來說分配公鑰的過程是非常重要的。分配公鑰的過程必須能夠抵擋中間人攻擊。假設 A 交給 B 一個公鑰,並使 B 相信這是A 的公鑰,並且 C 可以截下 A 和 B 之間的信息傳遞,那麼 C 可以將自己的公鑰傳給 B,B 以為這是 A 的公鑰。C 可以將所有 B 傳遞給 A 的消息截下來,將這個消息用自己的密鑰解密,讀這個消息,然後將這個消息再用 A 的公鑰加密後傳給 A。理論上 A 和 B 都不會發現 C 在偷聽它們的消息,今天人們一般用數字認證來防止這樣的攻擊。

(1) 針對 RSA 最流行的攻擊一般是基於大數因數分解。1999年,RSA-155 (512 bits) 被成功分解,花了五個月時間(約8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央內存的 Cray C916計算機上完成。

RSA-158 表示如下:

2009年12月12日,編號為 RSA-768 (768 bits, 232 digits) 數也被成功分解。這一事件威脅了現通行的1024-bit 密鑰的安全性,普遍認為用戶應盡快升級到2048-bit 或以上。

RSA-768表示如下:

(2) 秀爾演算法
量子計算里的秀爾演算法能使窮舉的效率大大的提高。由於 RSA 演算法是基於大數分解 (無法抵抗窮舉攻擊),因此在未來量子計算能對 RSA 演算法構成較大的威脅。一個擁有 N 量子位的量子計算機,每次可進行2^N 次運算,理論上講,密鑰為1024位長的 RSA 演算法,用一台512量子比特位的量子計算機在1秒內即可破解。

DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 簽名演算法的變種,被美國 NIST 作為 DSS (DigitalSignature Standard)。 DSA 是基於整數有限域離散對數難題的。

簡單的說,這是一種更高級的驗證方式,用作數字簽名。不單單只有公鑰、私鑰,還有數字簽名。私鑰加密生成數字簽名,公鑰驗證數據及簽名,如果數據和簽名不匹配則認為驗證失敗。數字簽名的作用就是校驗數據在傳輸過程中不被修改,數字簽名,是單向加密的升級。

橢圓加密演算法(ECC)是一種公鑰加密演算法,最初由 Koblitz 和 Miller 兩人於1985年提出,其數學基礎是利用橢圓曲線上的有理點構成 Abel 加法群上橢圓離散對數的計算困難性。公鑰密碼體制根據其所依據的難題一般分為三類:大整數分解問題類、離散對數問題類、橢圓曲線類。有時也把橢圓曲線類歸為離散對數類。

ECC 的主要優勢是在某些情況下它比其他的方法使用更小的密鑰 (比如 RSA),提供相當的或更高等級的安全。ECC 的另一個優勢是可以定義群之間的雙線性映射,基於 Weil 對或是 Tate 對;雙線性映射已經在密碼學中發現了大量的應用,例如基於身份的加密。不過一個缺點是加密和解密操作的實現比其他機制花費的時間長。

ECC 被廣泛認為是在給定密鑰長度的情況下,最強大的非對稱演算法,因此在對帶寬要求十分緊的連接中會十分有用。

比特幣錢包公鑰的生成使用了橢圓曲線演算法,通過橢圓曲線乘法可以從私鑰計算得到公鑰, 這是不可逆轉的過程。

https://github.com/esxgx/easy-ecc

Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 演算法。

https://www.jianshu.com/p/58c1750c6f22

DH,全稱為"Diffie-Hellman",它是一種確保共享 KEY 安全穿越不安全網路的方法,也就是常說的密鑰一致協議。由公開密鑰密碼體制的奠基人 Diffie 和 Hellman 所提出的一種思想。簡單的說就是允許兩名用戶在公開媒體上交換信息以生成"一致"的、可以共享的密鑰。也就是由甲方產出一對密鑰 (公鑰、私鑰),乙方依照甲方公鑰產生乙方密鑰對 (公鑰、私鑰)。

以此為基線,作為數據傳輸保密基礎,同時雙方使用同一種對稱加密演算法構建本地密鑰 (SecretKey) 對數據加密。這樣,在互通了本地密鑰 (SecretKey) 演算法後,甲乙雙方公開自己的公鑰,使用對方的公鑰和剛才產生的私鑰加密數據,同時可以使用對方的公鑰和自己的私鑰對數據解密。不單單是甲乙雙方兩方,可以擴展為多方共享數據通訊,這樣就完成了網路交互數據的安全通訊。

具體例子可以移步到這篇文章: 非對稱密碼之DH密鑰交換演算法

參考:
https://blog.csdn.net/u014294681/article/details/86705999

https://www.cnblogs.com/wangzxblog/p/13667634.html

https://www.cnblogs.com/taoxw/p/15837729.html

https://www.cnblogs.com/fangfan/p/4086662.html

https://www.cnblogs.com/utank/p/7877761.html

https://blog.csdn.net/m0_59133441/article/details/122686815

https://www.cnblogs.com/muliu/p/10875633.html

https://www.cnblogs.com/wf-zhang/p/14923279.html

https://www.jianshu.com/p/7a927db713e4

https://blog.csdn.net/ljx1400052550/article/details/79587133

https://blog.csdn.net/yuanjian0814/article/details/109815473

㈦ 什麼是DH非對稱加密演算法

DH(僅能用於密鑰分配,不能加解密數據)
非對稱加密演算法

特點:

發送方和接收方均有一個密鑰對(公鑰+私鑰),其中公鑰傳播,私鑰自己保存,不需要傳播
私鑰不需要傳播的特性解決了對稱加密演算法中密鑰傳播的困難(這個困難一般通過線下傳遞可以解決)
加密安全性極高,只用於一些電子商務網站,加解密速度遠低於對稱加密
一般情況下,為了解決非對稱加密演算法加解密速度低的問題,採用非對稱加密(使用公鑰+私鑰對對稱加密的密鑰進行加解密)+對稱加密(加解密數據)相結合的方式。
常見演算法:

DH(非對稱加密的基石)
RSA(非對稱加密的經典,除了可用於非對稱加密,也可用於數字簽名,RSA--155(512位密鑰)已被破解)
ElGamal

熱點內容
蘋果7的存儲空間在哪 發布:2025-01-19 03:10:35 瀏覽:581
2012文件伺服器如何新建用戶 發布:2025-01-19 02:43:10 瀏覽:884
android復試 發布:2025-01-19 02:39:11 瀏覽:654
c獲取文件夾中 發布:2025-01-19 02:33:48 瀏覽:549
如何查看360瀏覽器保存的密碼 發布:2025-01-19 02:27:14 瀏覽:94
源碼分享站 發布:2025-01-19 01:21:26 瀏覽:911
安卓如何設置方向鎖定生效 發布:2025-01-19 01:21:25 瀏覽:72
iis上傳限制 發布:2025-01-19 01:14:52 瀏覽:16
我的世界寶可夢伺服器181 發布:2025-01-19 01:12:32 瀏覽:183
如何用雲伺服器掛游戲 發布:2025-01-19 01:09:19 瀏覽:214