xxtea加密
xxtea 的密鑰長度128bit,塊長度不定, 是32bit的倍數。
PHP做位運算要小心。整形有符號,會自動轉換成浮點,要控制好范圍。
② 怎麼用lua compile對lua腳本加密
cmd運行命令:
cocos luacompile -s src/ -d out/ -e -k testKey123456 -b testSign12345 --disable-compile
提示:
D:\zm\Test>cocos luacompile -s src/ -d out/ -e -k testKey123456 -b testSign12345 --disable-compile
通過 luacompile 命令對 lua 文件進行 XXTEA 加密以及編譯為位元組碼的處理。
編譯為位元組碼的功能基於 LuaJIT v2.0.3,所以目前編譯成位元組碼的文件不適用於 iOS 64
位設備。
正在處理 lua 文件。
編譯完成。
編譯成功:我把 out 目錄的名字換成了 src ,原 src 目錄改名叫 src_org
vs 中 加入 這一句:
stack->setXXTEAKeyAndSign("testKey123456", strlen("testKey123456"), "testSign123456", strlen("testSign123456"));
③ c# 編寫的 資料庫加密,如何解密
用aes,des之類的加密演算法加密,密鑰持久化在配置文件或者資料庫中。這樣別人看到的都是密文,你在自己的界面中可以用對應的密鑰解密,你看到的就是原文了。
④ java 中 url地址欄里傳的數字值,如何加密
現在很多加密演算法的 比如你可以使用XXTea加密。前端使用post請求,請求之前將你要傳的參數 組合成一個json格式,之後進行XXTea加密,加密完之後 將加密得到的字元串放到post 請求數據中。後台加一個攔截器,拿到你的請求地址以及加密字元串,然後將字元串解密 得到一個map,再通過request得到的ParamRequestWrapper 將解密後的參數放回去,這樣你的方法就可以照常拿到數據了。
⑤ 輕量級 加密演算法 有哪幾種
注:(以下內容我是從網上找的,不知道能不能幫到你..這些問題我也不怎麼懂!!)
1.AES(Advanced Encryption Standard),
AES是一個使用128為分組塊的分組加密演算法,分組塊和128、192或256位的密鑰一起作為輸入,對4×4的位元組數組上進行操作。AES的每一輪加密都包含4個階段,分別是AddRoundKey,SubBytes,ShiftRows,和MixColumns。眾所周之AES是種十分高效的演算法,尤其在8位架構中,這源於它面向位元組的設計。
AES 適用於8位的小型單片機或者普通的32位微處理器,並且適合用專門的硬體實現,硬體實現能夠使其吞吐量(每秒可以到達的加密/解密bit數)達到十億量級。同樣,其也適用於RFID系統。[3]高效的實現和演算法的免費使用為AES在無線區域網和後來出現的相關協議中的應用鋪平了道路。
2.DESL(Data Encryption Standard Lightweight Extension),
數據加密標准(DES)是由美國聯邦信息處理標准在1976年為美國選出的一種加密演算法。作為一個分組加密演算法,DES在64位大小的分組快上進行操作,其密鑰同樣也是64位。[10]DES的大致結構由Feistel網路組成,此網路中包括含有8個S-Boxes的16次完全相同的基本輪回,一次初始排列,一次最終排列和一個獨立的密鑰次序表。
3.XXTEA
TEA微型加密演算法最初是由David Wheeler和Roger Needham在1994年以Fast Software Encryption工作室的名義發表的,設計的重點在於描述與實現的簡單性。它是一種分組加密演算法,以128位的密鑰對64位的分組塊進行操作。[6]TEA遭受到等效密鑰的困擾——每個密鑰與其他是那個密鑰是等效的,也就是說有效的密鑰長度只有126位。此演算法易受到相關密鑰(Related Key)攻擊法的攻擊。
⑥ 什麼是TEA演算法
TEA演算法被廣泛地應用於計算機數據加密領域,OICQ的數據安全採用了TEA演算法。本文討論了TEA的演算法的原理及實現,並揭示了QQ中該演算法的應用,本文是靈鑰科技公司(www.panakes.com)在即時通信密碼研究公開的第一篇論文,今後我們將陸續發表相關的論文及相應的產品。
TEA演算法簡介
TEA演算法是由劍橋大學計算機實驗室的DavidWheeler和RogerNeedham於1994年發明.TEA是TinyEncryptionAlgorithm的縮寫。特點是加密速度極快,高速高效,但是抗差分攻擊能力差。
TEA加密演算法是一種分組密碼演算法,其明文密文塊64比特(8位元組),密鑰長度128比特(16位元組)。TEA加密演算法的迭代次數可以改變,建議的迭代次數為32輪,盡管演算法的發明人強調加密16輪就很充分了。兩個TEAFeistel周期算為一輪。圖1示例了TEA一輪的加密流程。
以下示例了TEA的C語言加密演算法,TEA的解密演算法與加密演算法類似。
#defineTEA_ROUNDS0x20
#defineTEA_DELTA0x9E3779B9
#defineTEA_SUM0xE3779B90
voidtiny_encrypt(unsignedlong*constv,unsignedlong*constw,
constunsignedlong*constk)
{
registerunsignedlong
y=v[0],
z=v[1],
a=k[0],
b=k[1],
c=k[2],
d=k[3],
n=TEA_ROUNDS,
sum=0,
delta=TEA_DELTA;
while(n-->0){
sum+=delta;
y+=(z<<4)+a^z+sum^(z>>5)+b;
z+=(y<<4)+c^y+sum^(y>>5)+d;
}
w[0]=y;
w[1]=z;
}
TEA演算法利用的不斷增加的(即源程序中的delta)值作為變化,,就是黃金分割率。它的作用是使得每輪的加密是不同。的准確值可能不太重要。但是在這里,它被初始化為
=0x9e3779b
QQ是如何利用TEA進行加密的?
TEA演算法被廣泛應用於QQ的數據加密中,QQ採用16輪的TEA演算法加密,在這時採取16輪加密時而不採取標準的32輪加密時為了減少驗證伺服器的壓力。QQ在數據加密前採用了密碼學中的常用的填充及交織技術,減少加密數據的相關性,增加破譯者的破解難度。
下表列出了QQ應用TEA演算法幾個方面
序號
應用
相關文件
1
通訊報文的加密/解密
2
消息記錄的加密/解密
MsgEx.db
3
本地消息密碼、首次登錄時間、提示內容驗證密碼
Matrix.db
4
消息備份文件
*.bak
QQ的TEA演算法源程序分析
QQ在進行TEA加密前採用ntohl函數對原文數據和加密密鑰進行了變換,從網路位元組順序轉換位主機位元組順序進行加密後,再通過htonl函數將數據轉換為網路位元組順序的數據。
為什麼要這樣做呢?因為不同的計算機使用不同的位元組順序存儲數據。因此任何從Winsock函數對IP地址和埠號的引用和傳給Winsock函數的IP地址和埠號均時按照網路順序組織的。
為防止分析者分析出QQ是採用TEA加密演算法的,程序的設計者採用了subeax,61C88647h指令,而不採用Addeax9e3779b9h指令。因為分析者只需要判斷9e3779b9h(即是我們前面提的黃金分割率的值)就知道採用了TEA加密演算法。
sub_409A43procnear;CODEXREF:sub_409B8C+AEp
;sub_409B8C+109p...
var_10=dwordptr-10h
var_C=dwordptr-0Ch
var_8=dwordptr-8
var_4=dwordptr-4
arg_0=dwordptr8
arg_4=dwordptr0Ch
arg_8=dwordptr10h
pushebp
movebp,esp
subesp,10h
pushebx
pushesi
movesi,[ebp+arg_0]
pushedi
pushdwordptr[esi];netlong
callntohl
pushdwordptr[esi+4];netlong
movedi,eax;y
callntohl
movebx,eax;z
moveax,[ebp+arg_4]
leaecx,[ebp+var_10]
leaesi,[ebp+var_10]
subeax,ecx
mov[ebp+arg_0],4
mov[ebp+arg_4],eax
jmpshortloc_409A7C
;哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪哪?
.text:00409A79
loc_409A79:;CODEXREF:sub_409A43+49j
moveax,[ebp+arg_4]
loc_409A7C:;CODEXREF:sub_409A43+34j
pushdwordptr[eax+esi];netlong
callntohl;對k[0],k[1],k[2],k[3]進行ntohl變化,
mov[esi],eax
addesi,4
dec[ebp+arg_0]
jnzshortloc_409A79
push10h;做十六輪TEA運算
xoreax,eax
popecx
loc_409A93:;CODEXREF:sub_409A43+88j
movedx,ebx
movesi,ebx
shredx,5;z>>5
addedx,[ebp+var_C];z>>5+k[1]
subeax,61C88647h;sum=sum+deltadelta:0x9e3779b9
shlesi,4;z<<4
addesi,[ebp+var_10];z<<4+k[0]
xoredx,esi;(z>>5+k[1])^(z<<4+k[0])
leaesi,[eax+ebx];sum+z
xoredx,esi;(z<<4+k[0])^(sum+z)^(z>>5+k[1])
addedi,edx;y+=(z<<4+k[0])^(sum+z)^(z>>5+k[1])
movedx,edi
movesi,edi
shredx,5;y>>5
addedx,[ebp+var_4];y>>5+k[3]
shlesi,4;y<<4
addesi,[ebp+var_8];y<<4+k[2]
xoredx,esi;(y>>5+k[3])^(y<<4+k[2])
leaesi,[eax+edi];(sum+y)
xoredx,esi;(y<<4+k[2])^(sum+y)^(y>>5+k[3])
addebx,edx;z+=(y<<4+k[2])^(sum+y)^(y>>5+k[3])
dececx
jnzshortloc_409A93
pushedi;hostlong
callhtonl
movesi,[ebp+arg_8]
pushebx;hostlong
mov[esi],eax;加密結果
callhtonl
mov[esi+4],eax;加密結果
popedi
popesi
popebx
leave
retn
sub_409A43endp
結論
作為一種分組加密演算法,TEA加密演算法在其發展的過程中,目前出現了幾種針對TEA演算法設計的缺陷攻擊方法,使得原有的TEA加密演算法變得不安全,在過去的十幾年中,TEA演算法進行了若干次的改進,歷經XTEA,BlockTEA,XXTEA幾個版本。目前最新的演算法是XXTEA。
QQ採用了最初的TEA演算法做其核心的加密演算法,QQ在採用TEA演算法時採用了16輪的加密,其加密復雜度比32輪減了許多。利用TEA演算法的設計缺陷,使得快速破解QQ密碼成為可能。
值得一提的QQ在利用TEA演算法做加密時,採用了交織及隨機填充隨機數的技術,增加了密碼分析者分析難度,從一定程度上保護了信息的安全。
更多信息請訪問www.panakes.com
TEA(Tiny Encryption Algorithm) 是一種優秀的數據加密演算法,雖然它比 DES(Data Encryption Standard) 要簡單得多, 但有很強的抗差分分析能力,加密速度也比 DES 快得多,而且對 64 位數據加密的密鑰長達 128 位,安全性相當好。 下面的程序來自盧開澄《計算機密碼學》(清華大學出版社)。
補充:為了使這段程序更加實用,我將其整理為幾個單元, 分別用於 Delphi 和 C++Builder 。包括對數據流 TMemoryStream 和字元串的加密/解密功能, 對字元串的加密/解密還通過 Base64 編碼/解碼,保持加密後的字元串仍為字元串。
// v[2] : 64bit data, k[4] : 128bit key
void encipher( unsigned long * const v, const unsigned long * const k )
{
register unsigned long y = v[0], z = v[1], sum = 0, delta = 0x9E3779B9,
a = k[0], b = k[1], c = k[2], d = k[3], n = 32;
while ( n-- > 0 )
{
sum += delta;
y += ( z << 4 ) + a ^ z + sum ^ ( z >> 5 ) + b;
z += ( y << 4 ) + c ^ y + sum ^ ( y >> 5 ) + d;
}
v[0] = y;
v[1] = z;
}
void decipher( unsigned long * const v, const unsigned long * const k )
{
register unsigned long y = v[0], z = v[1], sum = 0xC6EF3720, delta = 0x9E3779B9,
a = k[0], b = k[1], c = k[2], d = k[3], n = 32;
// sum = delta << 5, in general sum = delta * n
while ( n-- > 0 )
{
z -= ( y << 4 ) + c ^ y + sum ^ ( y >> 5 ) + d;
y -= ( z << 4 ) + a ^ z + sum ^ ( z >> 5 ) + b;
sum -= delta;
}
v[0] = y;
v[1] = z;
}
⑦ 如何破解sqlite資料庫文件
針對sqlite資料庫文件,進行加密。現有兩種方案如下:
1.對資料庫中的數據進行加密。
2.對資料庫文件進行加密
1.uin怎麼獲取?
這個uin不是登錄的帳號,而是屬於內部的、程序界面上不可見的一個編號。
至於查看,最簡單的方法就是登錄web微信後,按F12打開網頁調試工具,然後ctrl+F搜索「uin」,可以找到一串長長的URL,裡面的uin就是當前登錄的微信的uin。
還
有一種方法就是配置文件里,導出的微信目錄下有幾個cfg文件,這幾個文件里有保存,不過是java的hashmap,怎麼解析留給小夥伴們自己琢磨吧,
還有就是有朋友反應退出微信(後台運行不叫退出)或者注銷微信後會清空這些配置信息,所以小夥伴們導出的時候記得在微信登陸狀態下導出。博主自己鼓搗了一
個小程序來完成解析。
2.一個手機多個登錄帳號怎麼辦(沒有uin怎麼辦)
根
據博主那個解密的帖子,必須知道串號和uin。串號好說,配置中一般都有可以搞到,uin從配置中讀取出來的時候只有當前登錄的或者最後登錄的,其他的幾
個記錄都沒辦法解密。網上某軟體的解決方法是讓用戶一個一個登錄後再導出。這個解決方法在某些情況下是不可能的,或者有時候根本不知道uin。
後來經過一個朋友的指點,博主終於發現了解決方法,可以從配置中秒讀出來這個uin,這個方法暫時不透漏了,只是說明下這個異常情況。
3.串號和uin怎麼都正確的怎麼還是沒辦法解密
先
說說串號這個玩意,幾個熱心的朋友反饋了這個問題,經過博主測試發現不同的手機使用的不一定是IMEI,也可能是IMSI等等,而且串號也不一定是標準的
15位,可能是各種奇葩,比如輸入*#06#出來的是一個,但是在微信程序里用的卻是另一個非常奇葩的東西,這種情況多在雙卡雙待和山寨機中出現,經過嚴
格的測試,現在已經能做到精確識別,那幾位熱心的朋友也贈與了不同的代碼表示鼓勵。
4.計算出來了正確的key為什麼無法打開資料庫文件
微
信這個變態用的不是標準的sqlite資料庫,那個帖子也提到了不是資料庫加密,是文件的內容加密,其實是sqlcipher。官方上竟然還賣到
149$,不過倒是開放了源碼,水平夠高的可以自己嘗試編譯。google還能搜索到sqlcipher for
windows這個很好編譯,不過博主不知是長相問題還是人品問題,編譯出來的無法打開微信的資料庫,後來改了這份代碼才完成。
5.資料庫文件內容是加密的,怎麼還原
這
個是某些特殊情況下用到的,比如聊天記錄刪除了資料庫中就沒了,但是某個網友測試說資料庫無法查詢出來了,但是在文件中還是有殘留的。這個情況我沒測試
過,不過想想感覺有這個可能,就跟硬碟上刪除了文件其實就是刪除了文件的硬碟索引,內容還是殘留在硬碟上可以還原一樣,sqlite資料庫刪除的條目只是
抹去了索引,內容還存在這個文件中。
網上的都是直接打開讀取,並沒有解密還原這個文件成普通的sqlite資料庫,使用sqlcipher
的導出方法也只是將可查詢的內容導出。後來博主花了時間通讀了內容加密的方式,做了一個小程序將加密的文件內容直接解密,不操作修改任何數據,非資料庫轉
換,直接數據流解密,完全還原出來了原始的未加密的資料庫文件,大小不變,無內容損失,可以直接用sqlite admin等工具直接打開。
6.已經刪除的聊天內容可以恢復么
通過上述第5的方式還原出原數據後,經測試可以恢復。sqlite的刪除並不會從文件中徹底刪掉,而是抹掉索引,所以可以通過掃描原始文件恢復。前提是沒有重裝過微信。。。
兩種加密方式的優缺點,比較如下:
一、對資料庫中的數據進行加密
優點:
1.實現數據加密快速,只需添加兩個方法
一是:對明文數據進行加密返回密文數據
二是:對密文數據進行解密返回明文數據
2.程序無需進行太大變動,僅在對數據進行添加,修改,刪除,查詢時。針對指定的表欄位進行修改進行加密,解密的欄位即可。
不足:
1.由於對數據進行了加密。所以為了看到明文,必須密文進行解密。因此會增加處理器的消耗。因終端手機的處理能力有限,可能會出現處理數據緩慢的現象發生。
2.僅僅對數據進行了加密,還是可以看到數據表的sql語句,可能猜測到表的作用。另外,如果沒有對一個表中的所有欄位加密,則可以看沒有加密的明文數據。
需要做的工作:
1.無需考慮平台差異性,qt,android,ios都能快速的實現。只需在每個平台上,使用各自的語言,實現同樣的加密,解密演算法即可。
2.需要對加密演算法進行了解,選擇一種加密演算法,進行實現。
二、對資料庫文件進行加密
優點:
1.對整個文件進行了加密,用戶通過編輯器看不到任何有用的數據,用戶使用sqlite browser軟體也無法打開文件查看數據,保證了數據安全。
2.進行打開資料庫時,使用程序sqlite3_key(db,」********」,8);即可對文件解密,對數據表的操作無需進行加密,採用明文即可。
不足:
1.需要修改sqlite的源代碼,這個工作難度比較大。
2.需要對修改後的sqlite進行編譯,需要對makefile有所了解,手動編寫makefile文件,對源程序進行編譯。因平台差異性,可能會造成某個平台無法編譯生成動態鏈接庫的可能。
3.需要對數據訪問層代碼進行修改,例如qt平台需要將以前對資料庫操作使用的QSqlQuery類,更改為使用sqlite3.h文件中定義操作,對資料庫操作。其他平台也一樣,都要做這一步的修改。
4.在程序編譯時,要加入使用加密的動態鏈接庫(linux為共享庫.so文件)windows平台最容易,只需將所使用的dll文件到應用程序中即可。其他平台需要實驗,看如何引入庫,如果編譯。
需要做的工作:
1.修改sqlite源代碼,追加對資料庫文件進行加密的功能。
2.編譯含有加密功能的程序源代碼,生成各自平台需要使用的庫文件。
3.將加密sqlite庫文件引入各自平台中,修改資料庫訪問層代碼。
4.進行程序的部署,測試。
三、資料庫加密原理
目前主流的資料庫都採用了各種安全措施,主要包括用戶認證、訪問控制、數據加密存儲和資料庫操作審計等措施。
用戶認證:用戶或者程序向資料庫提供自己的有效身份證明,資料庫鑒別用戶的身份是否合法,只有合法的用戶才能存取數據
庫中的數據。用戶認證是所有安全機制的前提,只有通過認證才能進行授權訪問和審計。
訪問控制:資料庫管理系統為不同的用戶分配不同的許可權,保證用戶只能進行授權的訪問。目前,一些大型資料庫(如Oracle 等)
都採用了基於角色的訪問控制機制,即為用戶授予不同的角色,如db—owner,security administrator 等,不同的角色允許對資料庫執行不同的操作。
資料庫加密:用戶認證以及訪問控制對訪問資料庫進行了控制,但攻擊者可能會利用操作系統或資料庫漏洞,或物理接觸計算機,而直接接觸資料庫系統文件,從而可能繞過身份認證和存取控制而直接竊取或篡改資料庫內容。對資料庫中的數據進行加密是防範這類威脅的有效手段。
資料庫操作審計:監視和記錄用戶對資料庫所做的各種操作的安全機制,它記錄並存儲用戶的操作,用於事後分析,以檢查導致資料庫現狀的原因以及提供追蹤攻擊者的線索。資料庫的備份與恢復:當資料庫發生不可恢復的故障時,可以將資料庫恢復到先前的某個一致性的狀態。
四、SQLite 加密
由於SQLite 是開放源碼的,並且在其源碼中預留了加密介面,我們可以通過實現其預留的加密介面實現口令認證和資料庫加密以完善其加密機制。
1.口令認證
SQLite 資料庫文件是一個普通文本文件,對它的訪問首先依賴於文件的訪問控制。在此基礎上,再增加進一步的口令認證,即在訪問資料庫時必須提供正確的口令,如果通過認證就可以對資料庫執行創建、查詢、修改、插入、刪除和修改等操作;否則,不允許進一步的訪問。
2.資料庫加密
資料庫加密有兩種方式:
1)在資料庫管理系(Data Base Management System,DBMS)中實現加密功能,即在從資料庫中讀數據和向資料庫中寫數據時執行加解密操作;
2)應用層加密,即在應用程序中對資料庫的某些欄位的值進行加密,DBMS 管理的是加密後的密文。
前者與DBMS 結合好,加密方式對用戶透明,但增加了DBMS 的負載,並且需要修改DBMS的原始代碼;後者則需要應用程序在寫入數據前加密,在讀出數據後解密,因而會增大應用程序的負載。在此,通過實現SQLite 源碼中預留的加密介面,實現DBMS 級的加密。
3.使用xxx-tea 演算法加密SQLite 資料庫
微型加密演算法(TEA)及其相關變種(XTEA,Block TEA,XXTEA) 都是分組加密演算法,它們很容易被描述,實現也很簡單(典型的幾行代碼)。
TEA 演算法最初是由劍橋計算機實驗室的 David Wheeler 和 Roger Needham在 1994 年設計的。該演算法使用
128 位的密鑰為 64 位的信息塊進行加密,它需要進行 64 輪迭代,盡管作者認為 32
輪已經足夠了。該演算法使用了一個神秘常數δ作為倍數,它來源於黃金比率,以保證每一輪加密都不相同。但δ的精確值似乎並不重要,這里 TEA 把它定義為
δ=「(√5 – 1)231」(也就是程序中的 0×9E3779B9)。
之後TEA 演算法被發現存在缺陷,作為回應,設計者提出了一個 TEA 的升級版本——XTEA(有時也被稱為「tean」)。XTEA 跟
TEA 使用了相同的簡單運算,但它採用了截然不同的順序,為了阻止密鑰表攻擊,四個子密鑰(在加密過程中,原 128 位的密鑰被拆分為 4 個 32
位的子密鑰)採用了一種不太正規的方式進行混合,但速度更慢了。
在跟描述 XTEA 演算法的同一份報告中,還介紹了另外一種被稱為 Block TEA 演算法的變種,它可以對 32
位大小任意倍數的變數塊進行操作。該演算法將 XTEA
輪循函數依次應用於塊中的每個字,並且將它附加於它的鄰字。該操作重復多少輪依賴於塊的大小,但至少需要 6
輪。該方法的優勢在於它無需操作模式(CBC,OFB,CFB 等),密鑰可直接用於信息。對於長的信息它可能比 XTEA 更有效率。
在1998 年,Markku-JuhaniSaarinen 給出了一個可有效攻擊 Block TEA 演算法的代碼,但之後很快 David
J. Wheeler 和 Roger M.Needham 就給出了 Block TEA 演算法的修訂版,這個演算法被稱為 XXTEA。XXTEA
使用跟 Block TEA 相似的結構,但在處理塊中每個字時利用了相鄰字。它利用一個更復雜的 MX 函數代替了 XTEA 輪循函數,MX 使用 2
個輸入量。
⑧ xxtea zip 加密怎麼解開
針對sqlite資料庫文件,進行加密。現有兩種方案如下:
1.對資料庫中的數據進行加密。
2.對資料庫文件進行加密
1.uin怎麼獲取看
這個uin不是登錄的帳號,而是屬於內部的、程序界面上不可見的一個編號。
至於查看,最簡單的方法就是登錄web微信後,按F12打開網頁調試工具,然後ctrl+F搜索逗uin地,可以找到一串長長的URL,裡面的uin就是當前登錄的微信的uin。
還
有一種方法就是配置文件里,導出的微信目錄下有幾個cfg文件,這幾個文件里有保存,不過是java的hashmap,怎麼解析留給小夥伴們自己琢磨吧,
還有就是有朋友反應退出微信(後台運行不叫退出)或者注銷微信後會清空這些配置信息,所以小夥伴們導出的時候記得在微信登陸狀態下導出。博主自己鼓搗了一
個小程序來完成解析。
2.一個手機多個登錄帳號怎麼辦(沒有uin怎麼辦)
根
據博主那個解密的帖子,必須知道串號和uin。串號好說,配置中一般都有可以搞到,uin從配置中讀取出來的時候只有當前登錄的或者最後登錄的,其他的幾
個記錄都沒辦法解密。網上某軟體的解決方法是讓用戶一個一個登錄後再導出。這個解決方法在某些情況下是不可能的,或者有時候根本不知道uin。
後來經過一個朋友的指點,博主終於發現了解決方法,可以從配置中秒讀出來這個uin,這個方法暫時不透漏了,只是說明下這個異常情況。
3.串號和uin怎麼都正確的怎麼還是沒辦法解密
先
說說串號這個玩意,幾個熱心的朋友反饋了這個問題,經過博主測試發現不同的手機使用的不一定是IMEI,也可能是IMSI等等,而且串號也不一定是標準的
15位,可能是各種奇葩,比如輸入*#06#出來的是一個,但是在微信程序里用的卻是另一個非常奇葩的東西,這種情況多在雙卡雙待和山寨機中出現,經過嚴
格的測試,現在已經能做到精確識別,那幾位熱心的朋友也贈與了不同的代碼表示鼓勵。
4.計算出來了正確的key為什麼無法打開資料庫文件
微
信這個變態用的不是標準的sqlite資料庫,那個帖子也提到了不是資料庫加密,是文件的內容加密,其實是sqlcipher。官方上竟然還賣到
149$,不過倒是開放了源碼,水平夠高的可以自己嘗試編譯。google還能搜索到sqlcipher for
windows這個很好編譯,不過博主不知是長相問題還是人品問題,編譯出來的無法打開微信的資料庫,後來改了這份代碼才完成。
5.資料庫文件內容是加密的,怎麼還原
這
個是某些特殊情況下用到的,比如聊天記錄刪除了資料庫中就沒了,但是某個網友測試說資料庫無法查詢出來了,但是在文件中還是有殘留的。這個情況我沒測試
過,不過想想感覺有這個可能,就跟硬碟上刪除了文件其實就是刪除了文件的硬碟索引,內容還是殘留在硬碟上可以還原一樣,sqlite資料庫刪除的條目只是
抹去了索引,內容還存在這個文件中。
網上的都是直接打開讀取,並沒有解密還原這個文件成普通的sqlite資料庫,使用sqlcipher
的導出方法也只是將可查詢的內容導出。後來博主花了時間通讀了內容加密的方式,做了一個小程序將加密的文件內容直接解密,不操作修改任何數據,非資料庫轉
換,直接數據流解密,完全還原出來了原始的未加密的資料庫文件,大小不變,無內容損失,可以直接用sqlite admin等工具直接打開。
6.已經刪除的聊天內容可以恢復么
通過上述第5的方式還原出原數據後,經測試可以恢復。sqlite的刪除並不會從文件中徹底刪掉,而是抹掉索引,所以可以通過掃描原始文件恢復。前提是沒有重裝過微信。。。
兩種加密方式的優缺點,比較如下:
一、對資料庫中的數據進行加密
優點:
1.實現數據加密快速,只需添加兩個方法
一是:對明文數據進行加密返回密文數據
二是:對密文數據進行解密返回明文數據
2.程序無需進行太大變動,僅在對數據進行添加,修改,刪除,查詢時。針對指定的表欄位進行修改進行加密,解密的欄位即可。
不足:
1.由於對數據進行了加密。所以為了看到明文,必須密文進行解密。因此會增加處理器的消耗。因終端手機的處理能力有限,可能會出現處理數據緩慢的現象發生。
2.僅僅對數據進行了加密,還是可以看到數據表的sql語句,可能猜測到表的作用。另外,如果沒有對一個表中的所有欄位加密,則可以看沒有加密的明文數據。
需要做的工作:
1.無需考慮平台差異性,qt,android,ios都能快速的實現。只需在每個平台上,使用各自的語言,實現同樣的加密,解密演算法即可。
2.需要對加密演算法進行了解,選擇一種加密演算法,進行實現。
二、對資料庫文件進行加密
優點:
1.對整個文件進行了加密,用戶通過編輯器看不到任何有用的數據,用戶使用sqlite browser軟體也無法打開文件查看數據,保證了數據安全。
2.進行打開資料庫時,使用程序sqlite3_key(db,地********地,8);即可對文件解密,對數據表的操作無需進行加密,採用明文即可。
不足:
1.需要修改sqlite的源代碼,這個工作難度比較大。
2.需要對修改後的sqlite進行編譯,需要對makefile有所了解,手動編寫makefile文件,對源程序進行編譯。因平台差異性,可能會造成某個平台無法編譯生成動態鏈接庫的可能。
3.需要對數據訪問層代碼進行修改,例如qt平台需要將以前對資料庫操作使用的QSqlQuery類,更改為使用sqlite3.h文件中定義操作,對資料庫操作。其他平台也一樣,都要做這一步的修改。
4.在程序編譯時,要加入使用加密的動態鏈接庫(linux為共享庫.so文件)windows平台最容易,只需將所使用的dll文件到應用程序中即可。其他平台需要實驗,看如何引入庫,如果編譯。
需要做的工作:
1.修改sqlite源代碼,追加對資料庫文件進行加密的功能。
2.編譯含有加密功能的程序源代碼,生成各自平台需要使用的庫文件。
3.將加密sqlite庫文件引入各自平台中,修改資料庫訪問層代碼。
4.進行程序的部署,測試。
三、資料庫加密原理
目前主流的資料庫都採用了各種安全措施,主要包括用戶認證、訪問控制、數據加密存儲和資料庫操作審計等措施。
用戶認證:用戶或者程序向資料庫提供自己的有效身份證明,資料庫鑒別用戶的身份是否合法,只有合法的用戶才能存取數據
庫中的數據。用戶認證是所有安全機制的前提,只有通過認證才能進行授權訪問和審計。
訪問控制:資料庫管理系統為不同的用戶分配不同的許可權,保證用戶只能進行授權的訪問。目前,一些大型資料庫(如Oracle 等)
都採用了基於角色的訪問控制機制,即為用戶授予不同的角色,如db—owner,security administrator 等,不同的角色允許對資料庫執行不同的操作。
資料庫加密:用戶認證以及訪問控制對訪問資料庫進行了控制,但攻擊者可能會利用操作系統或資料庫漏洞,或物理接觸計算機,而直接接觸資料庫系統文件,從而可能繞過身份認證和存取控制而直接竊取或篡改資料庫內容。對資料庫中的數據進行加密是防範這類威脅的有效手段。
資料庫操作審計:監視和記錄用戶對資料庫所做的各種操作的安全機制,它記錄並存儲用戶的操作,用於事後分析,以檢查導致資料庫現狀的原因以及提供追蹤攻擊者的線索。資料庫的備份與恢復:當資料庫發生不可恢復的故障時,可以將資料庫恢復到先前的某個一致性的狀態。
四、SQLite 加密
由於SQLite 是開放源碼的,並且在其源碼中預留了加密介面,我們可以通過實現其預留的加密介面實現口令認證和資料庫加密以完善其加密機制。
1.口令認證
SQLite 資料庫文件是一個普通文本文件,對它的訪問首先依賴於文件的訪問控制。在此基礎上,再增加進一步的口令認證,即在訪問資料庫時必須提供正確的口令,如果通過認證就可以對資料庫執行創建、查詢、修改、插入、刪除和修改等操作;否則,不允許進一步的訪問。
2.資料庫加密
資料庫加密有兩種方式:
1)在資料庫管理系(Data Base Management System,DBMS)中實現加密功能,即在從資料庫中讀數據和向資料庫中寫數據時執行加解密操作;
2)應用層加密,即在應用程序中對資料庫的某些欄位的值進行加密,DBMS 管理的是加密後的密文。
前者與DBMS 結合好,加密方式對用戶透明,但增加了DBMS 的負載,並且需要修改DBMS的原始代碼;後者則需要應用程序在寫入數據前加密,在讀出數據後解密,因而會增大應用程序的負載。在此,通過實現SQLite 源碼中預留的加密介面,實現DBMS 級的加密。
3.使用xxx-tea 演算法加密SQLite 資料庫
微型加密演算法(TEA)及其相關變種(XTEA,Block TEA,XXTEA) 都是分組加密演算法,它們很容易被描述,實現也很簡單(典型的幾行代碼)。
TEA 演算法最初是由劍橋計算機實驗室的 David Wheeler 和 Roger Needham在 1994 年設計的。該演算法使用
128 位的密鑰為 64 位的信息塊進行加密,它需要進行 64 輪迭代,盡管作者認為 32
輪已經足夠了。該演算法使用了一個神秘常數δ作為倍數,它來源於黃金比率,以保證每一輪加密都不相同。但δ的精確值似乎並不重要,這里 TEA 把它定義為
δ=「(√5 – 1)231」(也就是程序中的 0×9E3779B9)。
之後TEA 演算法被發現存在缺陷,作為回應,設計者提出了一個 TEA 的升級版本——XTEA(有時也被稱為逗tean地)。XTEA 跟
TEA 使用了相同的簡單運算,但它採用了截然不同的順序,為了阻止密鑰表攻擊,四個子密鑰(在加密過程中,原 128 位的密鑰被拆分為 4 個 32
位的子密鑰)採用了一種不太正規的方式進行混合,但速度更慢了。
在跟描述 XTEA 演算法的同一份報告中,還介紹了另外一種被稱為 Block TEA 演算法的變種,它可以對 32
位大小任意倍數的變數塊進行操作。該演算法將 XTEA
輪循函數依次應用於塊中的每個字,並且將它附加於它的鄰字。該操作重復多少輪依賴於塊的大小,但至少需要 6
輪。該方法的優勢在於它無需操作模式(CBC,OFB,CFB 等),密鑰可直接用於信息。對於長的信息它可能比 XTEA 更有效率。
在1998 年,Markku-JuhaniSaarinen 給出了一個可有效攻擊 Block TEA 演算法的代碼,但之後很快 David
J. Wheeler 和 Roger M.Needham 就給出了 Block TEA 演算法的修訂版,這個演算法被稱為 XXTEA。XXTEA
使用跟 Block TEA 相似的結構,但在處理塊中每個字時利用了相鄰字。它利用一個更復雜的 MX 函數代替了 XTEA 輪循函數,MX 使用 2
個輸入量。