des加密演算法應用
本文介紹了一種國際上通用的加密演算法—DES演算法的原理,並給出了在VC++6.0語言環境下實現的源代碼。最後給出一個示例,以供參考。
關鍵字:DES演算法、明文、密文、密鑰、VC;
本文程序運行效果圖如下:
正文:
當今社會是信息化的社會。為了適應社會對計算機數據安全保密越來越高的要求,美國國家標准局(NBS)於1997年公布了一個由IBM公司研製的一種加密演算法,並且確定為非機要部門使用的數據加密標准,簡稱DES(Data Encrypton Standard)。自公布之日起,DES演算法作為國際上商用保密通信和計算機通信的最常用演算法,一直活躍在國際保密通信的舞台上,扮演了十分突出的角色。現將DES演算法簡單介紹一下,並給出實現DES演算法的VC源代碼。
DES演算法由加密、解密和子密鑰的生成三部分組成。
一.加密
DES演算法處理的數據對象是一組64比特的明文串。設該明文串為m=m1m2…m64 (mi=0或1)。明文串經過64比特的密鑰K來加密,最後生成長度為64比特的密文E。其加密過程圖示如下:
DES演算法加密過程
對DES演算法加密過程圖示的說明如下:待加密的64比特明文串m,經過IP置換後,得到的比特串的下標列表如下:
IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
該比特串被分為32位的L0和32位的R0兩部分。R0子密鑰K1(子密鑰的生成將在後面講)經過變換f(R0,K1)(f變換將在下面講)輸出32位的比特串f1,f1與L0做不進位的二進制加法運算。運算規則為:
f1與L0做不進位的二進制加法運算後的結果賦給R1,R0則原封不動的賦給L1。L1與R0又做與以上完全相同的運算,生成L2,R2…… 一共經過16次運算。最後生成R16和L16。其中R16為L15與f(R15,K16)做不進位二進制加法運算的結果,L16是R15的直接賦值。
R16與L16合並成64位的比特串。值得注意的是R16一定要排在L16前面。R16與L16合並後成的比特串,經過置換IP-1後所得比特串的下標列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
經過置換IP-1後生成的比特串就是密文e.。
下面再講一下變換f(Ri-1,Ki)。
它的功能是將32比特的輸入再轉化為32比特的輸出。其過程如圖所示:
對f變換說明如下:輸入Ri-1(32比特)經過變換E後,膨脹為48比特。膨脹後的比特串的下標列表如下:
E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31
膨脹後的比特串分為8組,每組6比特。各組經過各自的S盒後,又變為4比特(具體過程見後),合並後又成為32比特。該32比特經過P變換後,其下標列表如下:
P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
經過P變換後輸出的比特串才是32比特的f (Ri-1,Ki)。
下面再講一下S盒的變換過程。任取一S盒。見圖:
在其輸入b1,b2,b3,b4,b5,b6中,計算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再從Si表中查出x 行,y 列的值Sxy。將Sxy化為二進制,即得Si盒的輸出。(S表如圖所示)
至此,DES演算法加密原理講完了。在VC++6.0下的程序源代碼為:
for(i=1;i<=64;i++)
m1[i]=m[ip[i-1]];//64位明文串輸入,經過IP置換。
下面進行迭代。由於各次迭代的方法相同只是輸入輸出不同,因此只給出其中一次。以第八次為例://進行第八次迭代。首先進行S盒的運算,輸入32位比特串。
for(i=1;i<=48;i++)//經過E變換擴充,由32位變為48位
RE1[i]=R7[E[i-1]];
for(i=1;i<=48;i++)//與K8按位作不進位加法運算
RE1[i]=RE1[i]+K8[i];
for(i=1;i<=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i<7;i++)//48位分成8組
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面經過S盒,得到8個數。S1,s2,s3,s4,s5,s6,s7,s8分別為S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i<8;i++)//8個數變換輸出二進制
{
for(j=1;j<5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j<5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i<33;i++)//經過P變換
frk[i]=f[P[i-1]];//S盒運算完成
for(i=1;i<33;i++)//左右交換
L8[i]=R7[i];
for(i=1;i<33;i++)//R8為L7與f(R,K)進行不進位二進制加法運算結果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}
[ 原創文檔 本文適合中級讀者 已閱讀21783次 ] 文檔 代碼 工具
DES演算法及其在VC++6.0下的實現(下)
作者:航天醫學工程研究所四室 朱彥軍
在《DES演算法及其在VC++6.0下的實現(上)》中主要介紹了DES演算法的基本原理,下面讓我們繼續:
二.子密鑰的生成
64比特的密鑰生成16個48比特的子密鑰。其生成過程見圖:
子密鑰生成過程具體解釋如下:
64比特的密鑰K,經過PC-1後,生成56比特的串。其下標如表所示:
PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
該比特串分為長度相等的比特串C0和D0。然後C0和D0分別循環左移1位,得到C1和D1。C1和D1合並起來生成C1D1。C1D1經過PC-2變換後即生成48比特的K1。K1的下標列表為:
PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
C1、D1分別循環左移LS2位,再合並,經過PC-2,生成子密鑰K2……依次類推直至生成子密鑰K16。
注意:Lsi (I =1,2,….16)的數值是不同的。具體見下表:
迭代順序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位數 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
生成子密鑰的VC程序源代碼如下:
for(i=1;i<57;i++)//輸入64位K,經過PC-1變為56位 k0[i]=k[PC_1[i-1]];
56位的K0,均分為28位的C0,D0。C0,D0生成K1和C1,D1。以下幾次迭代方法相同,僅以生成K8為例。 for(i=1;i<27;i++)//循環左移兩位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i<=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i<=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密鑰k8
注意:生成的子密鑰不同,所需循環左移的位數也不同。源程序中以生成子密鑰 K8為例,所以循環左移了兩位。但在編程中,生成不同的子密鑰應以Lsi表為准。
三.解密
DES的解密過程和DES的加密過程完全類似,只不過將16圈的子密鑰序列K1,K2……K16的順序倒過來。即第一圈用第16個子密鑰K16,第二圈用K15,其餘類推。
第一圈:
加密後的結果
L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理類推:
得 L=R0, R=L0。
其程序源代碼與加密相同。在此就不重寫。
四.示例
例如:已知明文m=learning, 密鑰 k=computer。
明文m的ASCII二進製表示:
m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111
密鑰k的ASCII二進製表示:
k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010
明文m經過IP置換後,得:
11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000
等分為左右兩段:
L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000
經過16次迭代後,所得結果為:
L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4= R4=
L5= R5=
L6= R6=
L7= R7=
L8= R8=
L9= R9=
L10= R10=
L11= R11=
L12= R12=
L13= R13=
L14= R14=
L15= R15=
L16= R16=
其中,f函數的結果為:
f1= f2=
f3= f4=
f5= f6=
f7= f8=
f9= f10=
f11= f12=
f13= f14=
f15= f16=
16個子密鑰為:
K1= K2=
K3= K4=
K5= K6=
K7= K8=
K9= K10=
K11= K12=
K13= K14=
K15= K16=
S盒中,16次運算時,每次的8 個結果為:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;
子密鑰生成過程中,生成的數值為:
C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000
解密過程與加密過程相反,所得的數據的順序恰好相反。在此就不贅述。
參考書目:
《計算機系統安全》 重慶出版社 盧開澄等編著
《計算機密碼應用基礎》 科學出版社 朱文余等編著
《Visual C++ 6.0 編程實例與技巧》 機械工業出版社 王華等編著
『貳』 使用C/C++語言,將DES/AES加密演算法,用代碼實現
哎,學校大作業吧。核心是des和aes的演算法唄,自己一點點寫代碼量不很少呢。沒時間給你寫了。
不過有個很好的偷懶辦法:建議lz你去找一下OpenSSL的源碼。裡面有AES,DES的原生C實現。現成函數。lz你直接從裡面摳出來復制到你工程里就行了。。
『叄』 des演算法與rsa演算法區別
DES演算法與RSA演算法區別:
1、DES演算法:
優點:密鑰短,加密處理簡單,加密解密速度快,適用於加密大量數據的場合。
缺點:單鍵,不能從一個鍵推導出另一個鍵。
2、RSA演算法:
優點:應用廣泛,加密密鑰與解密密鑰不一樣,一般的加密密鑰稱為私鑰。解密密鑰稱為公鑰,私鑰加密後只能用公鑰解密,當然也可以用公鑰加密,用私鑰解密。
缺點:密鑰大小大,加密解密速度慢,一般用於加密少量數據,如DES密鑰。
(3)des加密演算法應用擴展閱讀:
一、安全性:
RSA的安全性依賴於大數分解,但它是否等同於大數分解還沒有從理論上得到證明,因為沒有證據證明破解RSA一定是大數分解。
如果有一種演算法不需要分解大數,則必須將其修改為分解大數的演算法。RSA演算法的一些變體已被證明等價於大數分解。
不管怎樣,分解n是最明顯的攻擊方式。把大素數分解到多個小數點後是可能的。因此,模n必須更大,這取決於具體的應用。
二、演算法定義:
1、DES演算法定義:是對稱演算法,加密密鑰和解密密鑰是相同的。
2、RSA演算法定義:非對稱演算法,加密密鑰與解密密鑰是不同的,一般的加密密鑰稱為私鑰,解密密鑰稱為公鑰,私鑰加密只能用於解密,當然也可以用於加密,解密用私鑰。
『肆』 DES演算法實現
完成一個DES 演算法的 詳細設計 ,內容包括:
DES(Data Encryption Standard)是一種用於電子數據加密的對稱密鑰塊加密演算法 .它以64位為分組長度,64位一組的明文作為演算法的輸入,通過一系列復雜的操作,輸出同樣64位長度的密文。DES 同樣採用64位密鑰,但由於每8位中的最後1位用於奇偶校驗,實際有效密鑰長度為56位。密鑰可以是任意的56位的數,且可隨時改變。
DES 使用加密密鑰定義變換過程,因此演算法認為只有持有加密所用的密鑰的用戶才能解密密文。DES的兩個重要的安全特性是混淆和擴散。其中 混淆 是指通過密碼演算法使明文和密文以及密鑰的關系非常復雜,無法從數學上描述或者統計。 擴散 是指明文和密鑰中的每一位信息的變動,都會影響到密文中許多位信息的變動,從而隱藏統計上的特性,增加密碼的安全。
DES演算法的基本過程是換位和置換。如圖,有16個相同的處理階段,稱為輪。還有一個初始和最終的排列,稱為 IP 和 FP,它們是反向的 (IP 取消 FP 的作用,反之亦然)。
在主輪之前,塊被分成兩個32位的一半和交替處理;這種縱橫交錯的方案被稱為Feistel 方法。Feistel 結構確保了解密和加密是非常相似的過程——唯一的區別是在解密時子鍵的應用順序是相反的。其餘的演算法是相同的。這大大簡化了實現,特別是在硬體中,因為不需要單獨的加密和解密演算法。
符號表示異或(XOR)操作。Feistel 函數將半塊和一些鍵合在一起。然後,將Feistel 函數的輸出與塊的另一半組合在一起,在下一輪之前交換這一半。在最後一輪之後,兩隊交換了位置;這是 Feistel 結構的一個特性,使加密和解密過程類似。
IP 置換表指定64位塊上的輸入排列。其含義如下:輸出的第一個比特來自輸入的第58位;第二個位來自第50位,以此類推,最後一個位來自第7位輸入。
最後的排列是初始排列的倒數。
展開函數被解釋為初始排列和最終排列。注意,輸入的一些位在輸出時是重復的;輸入的第5位在輸出的第6位和第8位中都是重復的。因此,32位半塊被擴展到48位。
P排列打亂了32位半塊的位元。
表的「左」和「右」部分顯示了來自輸入鍵的哪些位構成了鍵調度狀態的左和右部分。輸入的64位中只有56位被選中;剩下的8(8、16、24、32、40、48、56、64)被指定作為奇偶校驗位使用。
這個排列從56位鍵調度狀態為每輪選擇48位的子鍵。
這個表列出了DES中使用的8個S-box,每個S-box用4位的輸出替換6位的輸入。給定一個6位輸入,通過使用外部的兩個位選擇行,以及使用內部的四個位選擇列,就可以找到4位輸出。例如,一個輸入「011011」有外部位「01」和內部位「1101」。第一行為「00」,第一列為「0000」,S-box S5對應的輸出為「1001」(=9),即第二行第14列的值。
DES演算法的基本流程圖如下:
DES演算法是典型的對稱加密演算法,在輸入64比特明文數據後,通過輸入64比特密鑰和演算法的一系列加密步驟後,可以得到同樣為64比特的密文數據。反之,我們通過已知的密鑰,可以將密文數據轉換回明文。 我們將演算法分為了三大塊:IP置換、16次T迭代和IP逆置換 ,加密和解密過程分別如下:
實驗的設計模式是自頂向下的結構,用C語言去分別是先各個函數的功能,最後通過主函數將所有函數進行整合,讓演算法更加清晰客觀。
通過IP置換表,根據表中所示下標,找到相應位置進行置換。
對於16次 迭代,我們先將傳入的經過 IP 混淆過的64位明文的左右兩部分,分別為32位的 和32位的 。之後我們將 和 進行交換,得到作為IP逆置換的輸入:
,
子密鑰的生成,經歷下面一系列步驟:首先對於64位密鑰,進行置換選擇,因為將用戶輸入的64 位經歷壓縮變成了56位,所以我們將左面和右面的各28位進行循環位移。左右兩部分分別按下列規則做循環移位:當 ,循環左移1位;其餘情況循環左移2位。最後將得到的新的左右兩部分進行連接得到56位密鑰。
對半塊的 Feistel 操作分為以下五步:
如上二圖表明,在給出正確的密碼後,可以得到對應的明文。
若密碼錯誤,將解碼出錯誤答案。
【1】 Data Encryption Standard
【2】 DES演算法的詳細設計(簡單實現)
【3】 深入理解並實現DES演算法
【4】 DES演算法原理完整版
【5】 安全體系(一)—— DES演算法詳解
『伍』 對稱加密演算法之DES介紹
DES (Data Encryption Standard)是分組對稱密碼演算法。
DES演算法利用 多次組合替代演算法 和 換位演算法 ,分散和錯亂的相互作用,把明文編製成密碼強度很高的密文,它的加密和解密用的是同一演算法。
DES演算法,是一種 乘積密碼 ,其在演算法結構上主要採用了 置換 、 代替 、 模二相加 等函數,通過 輪函數 迭代的方式來進行計算和工作。
DES演算法也會使用到數據置換技術,主要有初始置換 IP 和逆初始置換 IP^-1 兩種類型。DES演算法使用置換運算的目的是將原始明文的所有格式及所有數據全部打亂重排。而在輪加密函數中,即將數據全部打亂重排,同時在數據格式方面,將原有的32位數據格式,擴展成為48位數據格式,目的是為了滿足S盒組對數據長度和數據格式規范的要求。
一組數據信息經過一系列的非線性變換以後,很難從中推導出其計算的過程和使用的非線性組合;但是如果這組數據信息使用的是線性變換,計算就容易的多。在DES演算法中,屬於非線性變換的計算過程只有S盒,其餘的數據計算和變換都是屬於線性變換,所以DES演算法安全的關鍵在於S盒的安全強度。此外,S盒和置換IP相互配合,形成了很強的抗差分攻擊和抗線性攻擊能力,其中抗差分攻擊能力更強一些。
DES演算法是一種分組加密機制,將明文分成N個組,然後對各個組進行加密,形成各自的密文,最後把所有的分組密文進行合並,形成最終的密文。
DES加密是對每個分組進行加密,所以輸入的參數為分組明文和密鑰,明文分組需要置換和迭代,密鑰也需要置換和循環移位。在初始置換IP中,根據一張8*8的置換表,將64位的明文打亂、打雜,從而提高加密的強度;再經過16次的迭代運算,在這些迭代運算中,要運用到子密鑰;每組形成的初始密文,再次經過初始逆置換 IP^-1 ,它是初始置換的逆運算,最後得到分組的最終密文。
圖2右半部分,給出了作用56比特密鑰的過程。DES演算法的加密密鑰是64比特,但是由於密鑰的第n*8(n=1,2…8)是校驗(保證含有奇數個1),因此實際參與加密的的密鑰只有 56比特 。開始時,密鑰經過一個置換,然後經過循環左移和另一個置換分別得到子密鑰ki,供每一輪的迭代加密使用。每輪的置換函數都一樣,但是由於密鑰位的重復迭代使得子密鑰互不相同。
DES演算法 利用多次組合替代演算法和換位演算法,分散和錯亂的相互作用,把明文編製成密碼強度很高的密文,它的加密和解密用的是同一演算法。
DES演算法詳述:DES對64位明文分組(密鑰56bit)進行操作。
1、 初始置換函數IP:64位明文分組x經過一個初始置換函數IP,產生64位的輸出x0,再將分組x0分成左半部分L0和右半部分R0:即將輸入的第58位換到第一位,第50位換到第2位,…,依次類推,最後一位是原來的第7位。L0、R0則是換位輸出後的兩部分,L0是輸出的左32位,R0是右32位。例,設置換前的輸入值為D1D2D3…D64,則經過初始置換後的結果為:L0=D58D50…D8;R0=D57D49…D7.其置換規則如表1所示。
DES加密過程最後的逆置換 IP^-1 ,是表1的 逆過程 。就是把原來的每一位都恢復過去,即把第1位的數據,放回到第58位,把第2位的數據,放回到第50位。
2、 獲取子密鑰 Ki :DES加密演算法的密鑰長度為56位,一般表示為64位(每個第8位用於奇偶校驗),將用戶提供的64位初始密鑰經過一系列的處理得到K1,K2,…,K16,分別作為 1~16 輪運算的 16個子密鑰 。
(1). 將64位密鑰去掉8個校驗位,用密鑰置換 PC-1 (表2)置換剩下的56位密鑰;
(2). 將56位分成前28位C0和後28位D0,即 PC-1(K56)=C0D0 ;
(3). 根據輪數,這兩部分分別循環左移1位或2位,表3:
(4). 移動後,將兩部分合並成56位後通過壓縮置換PC-2(表4)後得到48位子密鑰,即Ki=PC-2(CiDi).
子密鑰產生如圖2所示:
3、 密碼函數F(非線性的)
(1). 函數F的操作步驟:密碼函數F 的輸入是32比特數據和48比特的子密鑰:
A.擴展置換(E):將數據的右半部分Ri從32位擴展為48位。位選擇函數(也稱E盒),如表5所示:
B.異或:擴展後的48位輸出E(Ri)與壓縮後的48位密鑰Ki作異或運算;
C.S盒替代:將異或得到的48位結果分成八個6位的塊,每一塊通過對應的一個S盒產生一個4位的輸出。
(2)、D、P盒置換:將八個S盒的輸出連在一起生成一個32位的輸出,輸出結果再通過置換P產生一個32位的輸出即:F(Ri,Ki),F(Ri,Ki)演算法描述如圖3,最後,將P盒置換的結果與最初的64位分組的左半部分異或,然後,左、右半部分交換,開始下一輪計算。
4、密文輸出:經過16次迭代運算後,得到L16、R16,將此作為輸入,進行逆置換,即得到密文輸出。逆置換正好是初始置的逆運算。例如,第1位經過初始置換後,處於第40位,而通過逆置換,又將第40位換回到第1位,其逆置換規則如表8所示:
圖4為DES演算法加密原理圖:
DES演算法加密和解密過程採用相同的演算法,並採用相同的加密密鑰和解密密鑰,兩者的區別是:(1)、DES加密是從L0、R0到L15、R15進行變換,而解密時是從L15、R15到L0、R0進行變換的;(2)、加密時各輪的加密密鑰為K0K1…K15,而解密時各輪的解密密鑰為K15K14…K0;(3)、加密時密鑰循環左移,解密時密鑰循環右移。
DES加密過程分析:
(1)、首先要生成64位密鑰,這64位的密鑰經過「子密鑰演算法」換轉後,將得到總共16個子密鑰。將這些子密鑰標識為Kn(n=1,2,…,16)。這些子密鑰主要用於總共十六次的加密迭代過程中的加密工具。
(2)、其次要將明文信息按64位數據格式為一組,對所有明文信息進行分組處理。每一段的64位明文都要經過初試置換IP,置換的目的是將數據信息全部打亂重排。然後將打亂的數據分為左右兩塊,左邊一塊共32位為一組,標識為L0;右邊一塊也是32位為一組,標識為R0.
(3)、置換後的數據塊總共要進行總共十六次的加密迭代過程。加密迭代主要由加密函數f來實現。首先使用子密鑰K1對右邊32位的R0進行加密處理,得到的結果也是32位的;然後再將這個32位的結果數據與左邊32位的L0進行模2處理,從而再次得到一個32位的數據組。我們將最終得到的這個32位組數據,作為第二次加密迭代的L1,往後的每一次迭代過程都與上述過程相同。
(4)、在結束了最後一輪加密迭代之後,會產生一個64位的數據信息組,然後我們將這個64位數據信息組按原有的數據排列順序平均分為左右兩等分,然後將左右兩等分的部分進行位置調換,即原來左等分的數據整體位移至右側,而原來右等分的數據則整體位移至左側,這樣經過合並後的數據將再次經過逆初始置換IP^-1的計算,我們最終將得到一組64位的密文。
DES解密過程分析:DES的解密過程與它的加密過程是一樣的,這是由於DES演算法本身屬於對稱密碼體制演算法,其加密和解密的過程可以共用同一個過程和運算。
DES加密函數f:在DES演算法中,要將64位的明文順利加密輸出成64位的密文,而完成這項任務的核心部分就是加密函數f。加密函數f的主要作用是在第m次的加密迭代中使用子密鑰Km對Km-1進行加密操作。加密函數f在加密過程中總共需要運行16輪。
十六輪迭代演算法:它先將經過置換後的明文分成兩組,每組32位;同時密鑰也被分成了兩組,每組28位,兩組密鑰經過運算,再聯合成一個48位的密鑰,參與到明文加密的運算當中。S盒子,它由8個4*16的矩陣構成,每一行放著0到15的數據,順序各個不同,是由IBM公司設計好的。經過異或運算的明文,是一個48位的數據,在送入到S盒子的時候,被分成了8份,每份6位,每一份經過一個S盒子,經過運算後輸出為4位,即是一個0到15的數字的二進製表示形式。具體運算過程為,將輸入的6位中的第1位為第6位合並成一個二進制數,表示行號,其餘4位也合並成一個二進制數,表示列號。在當前S盒子中,以這個行號和列號為准,取出相應的數,並以二進制的形式表示,輸出,即得到4位的輸出,8個S盒子共計32位。
DES演算法優缺點:
(1)、產生密鑰簡單,但密鑰必須高度保密,因而難以做到一次一密;
(2)、DES的安全性依賴於密鑰的保密。攻擊破解DES演算法的一個主要方法是通過密鑰搜索,使用運算速度非常高的計算機通過排列組合枚舉的方式不斷嘗試各種可能的密鑰,直到破解為止。一般,DES演算法使用56位長的密鑰,通過簡單計算可知所有可能的密鑰數量最多是2^56個。隨著巨型計算機運算速度的不斷提高,DES演算法的安全性也將隨之下降,然而在一般的民用商業場合,DES的安全性仍是足夠可信賴的。
(3)、DES演算法加密解密速度比較快,密鑰比較短,加密效率很高但通信雙方都要保持密鑰的秘密性,為了安全還需要經常更換DES密鑰。
參考鏈接 : https://blog.csdn.net/fengbingchun/article/details/42273257
『陸』 數據加密標准DES主要應用范圍有哪些存在哪些缺陷
數據加密標准(des)由美國國家標准局提出,是目前廣泛採用的對稱加密方式之一,主要應用於銀行業中的電子資金轉帳(eft)領域。des的密鑰長度為56位。三重des是des的一種變形,這種方法使用兩個獨立的56位密鑰對交換的信息(如edi數據)進行3次加密,從而使其有效密鑰長度達到112位。rc2和rc4方法是rsa數據安全公司的對稱加密專利演算法。rc2和rc4不同於des它們採用可變密鑰長度的演算法。通過規定不同的密鑰長度rc2和rc4能夠提高或降低安全的程度。一些電子郵件產品(如lotusnotes和apple的opncollaborationenvironment)已採用了這些演算法。
『柒』 des加密演算法原理
DES加密演算法原理:
DES演算法使用一個56位的密鑰以及附加的8位奇偶校驗位,產生最大64位的分組大小。是一個迭代的分組密碼,其中將加密的文本亮散悔塊分成兩半。使用子密鑰對其中一半應用循環功能,然後將輸出與另一半進行「異或」運算;接著交換這兩半,這一過程會繼續下去,掘裂但最後一個循環不交換。DES使用16輪循環,使用異或,置換,代換,移位敬正操作四種基本運算。