當前位置:首頁 » 密碼管理 » ios代碼加密解密

ios代碼加密解密

發布時間: 2023-06-12 14:53:33

1. ios怎麼實現RAS加密解密

最近幾天折騰了一下如何在iOS上使用RSA來加密。iOS上並沒有直接的RSA加密API。但是iOS提供了x509的API,而x509是支持RSA加密的。因此,我們可以通過製作自簽名的x509證書(由於對安全性要求不高,我們並不需要使用CA認證的證書),再調用x509的相關API來進行加密。接下來記錄一下整個流程。
第一步,製作自簽名的證書
1.最簡單快捷的方法,打開Terminal,使用openssl(Mac OS X自帶)生成私鑰和自簽名的x509證書。
openssl req -x509 -out public_key.der -outform der -new -newkey rsa:1024 -keyout private_key.pem -days 3650
按照命令行的提示輸入內容就行了。
幾個說明:
public_key.der是輸出的自簽名的x509證書,即我們要用的。
private_key.pem是輸出的私鑰,用來解密的,請妥善保管。
rsa:1024這里的1024是密鑰長度,1024是比較安全的,如果需要更安全的話,可以用2048,但是加解密代價也會增加。
-days:證書過期時間,一定要加上這個參數,默認的證書過期時間是30天,一般我們不希望證書這么短就過期,所以寫上比較合適的天數,例如這里的3650(10年)。
事實上,這一行命令包含了好幾個步驟(我研究下面這些步驟的原因是我手頭已經由一個private_key.pem私鑰了,想直接用這個來生成x509證書,也就是用到了下面的2-3)
1)創建私鑰
openssl genrsa -out private_key.pem 1024
2)創建證書請求(按照提示輸入信息)
openssl req -new -out cert.csr -key private_key.pem
3)自簽署根證書
openssl x509 -req -in cert.csr -out public_key.der -outform der -signkey private_key.pem -days 3650
2.驗證證書。把public_key.der拖到xcode中,如果文件沒有問題的話,那麼就可以直接在xcode中打開,看到證書的各種信息。

第二步,使用public_key.der來進行加密。
1.導入Security.framework。
2.把public_key.der放到mainBundle中(一般直接拖到Xcode就行啦)。
3.從public_key.der讀取公鑰。
4.加密。
下面是參考代碼(只能用於加密長度小於等於116位元組的內容,適合於對密碼進行加密。使用了ARC,不過還是要注意部分資源需要使用CFRealse來釋放)
RSA.h
//
// RSA.h
//
#import <Foundation/Foundation.h>

@interface RSA : NSObject {
SecKeyRef publicKey;
SecCertificateRef certificate;
SecPolicyRef policy;
SecTrustRef trust;
size_t maxPlainLen;
}

- (NSData *) encryptWithData:(NSData *)content;
- (NSData *) encryptWithString:(NSString *)content;

@end

RSA.m
//
// RSA.m
//
#import "RSA.h"

@implementation RSA

- (id)init {
self = [super init];

NSString *publicKeyPath = [[NSBundle mainBundle] pathForResource:@"public_key"
ofType:@"der"];
if (publicKeyPath == nil) {
NSLog(@"Can not find pub.der");
return nil;
}

NSDate *publicKeyFileContent = [NSData dataWithContentsOfFile:publicKeyPath];
if (publicKeyFileContent == nil) {
NSLog(@"Can not read from pub.der");
return nil;
}

certificate = SecCertificateCreateWithData(kCFAllocatorDefault, ( __bridge CFDataRef)publicKeyFileContent);
if (certificate == nil) {
NSLog(@"Can not read certificate from pub.der");
return nil;
}

policy = SecPolicyCreateBasicX509();
OSStatus returnCode = (certificate, policy, &trust);
if (returnCode != 0) {
NSLog(@" fail. Error Code: %ld", returnCode);
return nil;
}

SecTrustResultType trustResultType;
returnCode = SecTrustEvaluate(trust, &trustResultType);
if (returnCode != 0) {
NSLog(@"SecTrustEvaluate fail. Error Code: %ld", returnCode);
return nil;
}

publicKey = SecTrustCopyPublicKey(trust);
if (publicKey == nil) {
NSLog(@"SecTrustCopyPublicKey fail");
return nil;
}

maxPlainLen = SecKeyGetBlockSize(publicKey) - 12;
return self;
}

- (NSData *) encryptWithData:(NSData *)content {

size_t plainLen = [content length];
if (plainLen > maxPlainLen) {
NSLog(@"content(%ld) is too long, must < %ld", plainLen, maxPlainLen);
return nil;
}

void *plain = malloc(plainLen);
[content getBytes:plain
length:plainLen];

size_t cipherLen = 128; // 當前RSA的密鑰長度是128位元組
void *cipher = malloc(cipherLen);

OSStatus returnCode = SecKeyEncrypt(publicKey, kSecPaddingPKCS1, plain,
plainLen, cipher, &cipherLen);

NSData *result = nil;
if (returnCode != 0) {
NSLog(@"SecKeyEncrypt fail. Error Code: %ld", returnCode);
}
else {
result = [NSData dataWithBytes:cipher
length:cipherLen];
}

free(plain);
free(cipher);

return result;
}

- (NSData *) encryptWithString:(NSString *)content {
return [self encryptWithData:[content dataUsingEncoding:NSUTF8StringEncoding]];
}

- (void)dealloc{
CFRelease(certificate);
CFRelease(trust);
CFRelease(policy);
CFRelease(publicKey);
}

@end

使用方法:
RSA *rsa = [[RSA alloc] init];
if (rsa != nil) {
NSLog(@"%@",[rsa encryptWithString:@"test"]);
}
else {
NSLog(@"init rsa error");
}

2. 關於iOS aes256加密的問題,請各位幫忙,搞了一個星期,急求答案!

之前在項目上用到AES256加密解密演算法,剛開始在java端加密解密都沒有問題,在iOS端加密解密也沒有問題。但是奇怪的是在java端加密後的文件在iOS端無法正確解密打開,然後簡單測試了一下,發現在java端和iOS端採用相同明文,相同密鑰加密後的密文不一樣!上網查了資料後發現iOS中AES加密演算法採用的填充是PKCS7Padding,而java不支持PKCS7Padding,只支持PKCS5Padding。我們知道加密演算法由演算法+模式+填充組成,所以這兩者不同的填充演算法導致相同明文相同密鑰加密後出現密文不一致的情況。那麼我們需要在java中用PKCS7Padding來填充,這樣就可以和iOS端填充演算法一致了。
要實現在java端用PKCS7Padding填充,需要用到bouncycastle組件來實現,下面我會提供該包的下載。啰嗦了一大堆,下面是一個簡單的測試,上代碼!
001 package com.encrypt.file;
002
003
004 import java.io.UnsupportedEncodingException;
005 importjava.security.Key;
006 import java.security.Security;
007
008 importjavax.crypto.Cipher;
009 importjavax.crypto.SecretKey;
010 importjavax.crypto.spec.SecretKeySpec;
011
012 public classAES256Encryption{
013
014 /**
015 * 密鑰演算法
016 * java6支持56位密鑰,bouncycastle支持64位
017 * */
018 public static finalString KEY_ALGORITHM="AES";
019
020 /**
021 * 加密/解密演算法/工作模式/填充方式
022 *
023 * JAVA6 支持PKCS5PADDING填充方式
024 * Bouncy castle支持PKCS7Padding填充方式
025 * */
026 public static finalString CIPHER_ALGORITHM="AES/ECB/PKCS7Padding";
027
028 /**
029 *
030 * 生成密鑰,java6隻支持56位密鑰,bouncycastle支持64位密鑰
031 * @return byte[] 二進制密鑰
032 * */
033 public static byte[] initkey() throwsException{
034
035 // //實例化密鑰生成器
036 // Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
037 // KeyGenerator kg=KeyGenerator.getInstance(KEY_ALGORITHM, "BC");
038 // //初始化密鑰生成器,AES要求密鑰長度為128位、192位、256位
039 //// kg.init(256);
040 // kg.init(128);
041 // //生成密鑰
042 // SecretKey secretKey=kg.generateKey();
043 // //獲取二進制密鑰編碼形式
044 // return secretKey.getEncoded();
045 //為了便於測試,這里我把key寫死了,如果大家需要自動生成,可用上面注釋掉的代碼
046 return new byte[] { 0x08, 0x08, 0x04, 0x0b, 0x02, 0x0f, 0x0b, 0x0c,
047 0x01, 0x03, 0x09, 0x07, 0x0c, 0x03, 0x07, 0x0a, 0x04, 0x0f,
048 0x06, 0x0f, 0x0e, 0x09, 0x05, 0x01, 0x0a, 0x0a, 0x01, 0x09,
049 0x06, 0x07, 0x09, 0x0d };
050 }
051
052 /**
053 * 轉換密鑰
054 * @param key 二進制密鑰
055 * @return Key 密鑰
056 * */
057 public static Key toKey(byte[] key) throwsException{
058 //實例化DES密鑰
059 //生成密鑰
060 SecretKey secretKey=newSecretKeySpec(key,KEY_ALGORITHM);
061 returnsecretKey;
062 }
063
064 /**
065 * 加密數據
066 * @param data 待加密數據
067 * @param key 密鑰
068 * @return byte[] 加密後的數據
069 * */
070 public static byte[] encrypt(byte[] data,byte[] key) throwsException{
071 //還原密鑰
072 Key k=toKey(key);
073 /**
074 * 實例化
075 * 使用 PKCS7PADDING 填充方式,按如下方式實現,就是調用bouncycastle組件實現
076 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
077 */
078 Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
079 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM, "BC");
080 //初始化,設置為加密模式
081 cipher.init(Cipher.ENCRYPT_MODE, k);
082 //執行操作
083 returncipher.doFinal(data);
084 }
085 /**
086 * 解密數據
087 * @param data 待解密數據
088 * @param key 密鑰
089 * @return byte[] 解密後的數據
090 * */
091 public static byte[] decrypt(byte[] data,byte[] key) throwsException{
092 //歡迎密鑰
093 Key k =toKey(key);
094 /**
095 * 實例化
096 * 使用 PKCS7PADDING 填充方式,按如下方式實現,就是調用bouncycastle組件實現
097 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")
098 */
099 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM);
100 //初始化,設置為解密模式
101 cipher.init(Cipher.DECRYPT_MODE, k);
102 //執行操作
103 returncipher.doFinal(data);
104 }
105 /**
106 * @param args
107 * @throws UnsupportedEncodingException
108 * @throws Exception
109 */
110 public static void main(String[] args) {
111
112 String str="AES";
113 System.out.println("原文:"+str);
114
115 //初始化密鑰
116 byte[] key;
117 try {
118 key = AES256Encryption.initkey();
119 System.out.print("密鑰:");
120 for(int i = 0;i<key.length;i++){
121 System.out.printf("%x", key[i]);
122 }
123 System.out.print("\n");
124 //加密數據
125 byte[] data=AES256Encryption.encrypt(str.getBytes(), key);
126 System.out.print("加密後:");
127 for(int i = 0;i<data.length;i++){
128 System.out.printf("%x", data[i]);
129 }
130 System.out.print("\n");
131
132 //解密數據
133 data=AES256Encryption.decrypt(data, key);
134 System.out.println("解密後:"+newString(data));
135 } catch (Exception e) {
136 // TODO Auto-generated catch block
137 e.printStackTrace();
138 }
139
140 }
141 }
運行程序後的結果截圖:

ViewController.m文件

01 //
02 // ViewController.m
03 // AES256EncryptionDemo
04 //
05 // Created by 孫 裔 on 12-12-13.
06 // Copyright (c) 2012年 rich sun. All rights reserved.
07 //
08
09 #import "ViewController.h"
10 #import "EncryptAndDecrypt.h"
11
12 @interface ViewController ()
13
14 @end
15
16 @implementation ViewController
17 @synthesize plainTextField;
18 - (void)viewDidLoad
19 {
20 [super viewDidLoad];
21 // Do any additional setup after loading the view, typically from a nib.
22 }
23
24 - (void)didReceiveMemoryWarning
25 {
26 [super didReceiveMemoryWarning];
27 // Dispose of any resources that can be recreated.
28 }
29 //這個函數實現了用戶輸入完後點擊視圖背景,關閉鍵盤
30 - (IBAction)backgroundTap:(id)sender{
31 [plainTextField resignFirstResponder];
32 }
33
34 - (IBAction)encrypt:(id)sender {
35
36 NSString *plainText = plainTextField.text;//明文
37 NSData *plainTextData = [plainText dataUsingEncoding:NSUTF8StringEncoding];
38
39 //為了測試,這里先把密鑰寫死
40 Byte keyByte[] = {0x08,0x08,0x04,0x0b,0x02,0x0f,0x0b,0x0c,0x01,0x03,0x09,0x07,0x0c,0x03,
41 0x07,0x0a,0x04,0x0f,0x06,0x0f,0x0e,0x09,0x05,0x01,0x0a,0x0a,0x01,0x09,
42 0x06,0x07,0x09,0x0d};
43 //byte轉換為NSData類型,以便下邊加密方法的調用
44 NSData *keyData = [[NSData alloc] initWithBytes:keyByte length:32];
45 //
46 NSData *cipherTextData = [plainTextData AES256EncryptWithKey:keyData];
47 Byte *plainTextByte = (Byte *)[cipherTextData bytes];
48 for(int i=0;i<[cipherTextData length];i++){
49 printf("%x",plainTextByte[i]);
50 }
51
52 }
53 @end

附上出處鏈接:http://blog.csdn.net/pjk1129/article/details/8489550

3. 簡單講解iOS應用開發中的MD5加密的使用

一、簡單說明

1.說明

在開發應用的時候,數據的安全性至關重要,而僅僅用POST請求提交用戶的隱私數據,還是不能完全解決安全問題。

如:可以利用軟體(比如Charles)設置代理伺服器,攔截查看手機的請求數據

「青花瓷」軟體

因此:提交用戶的隱私數據時,一定不要明文提交,要加密處理後再提交

2.常見的加密演算法

MD5 SHA DES 3DES RC2和RC4 RSA IDEA DSA AES

3.加密演算法的選擇

一般公司都會有一套自己的加密方案,按照公司介面文檔的規定去加密

二、MD5

1.簡單說明

MD5:全稱是Message Digest Algorithm 5,譯為「消息摘要演算法第5版」

效果:對輸入信息生成唯一的.128位散列值(32個字元)

2.MD5的特點

(1)輸入兩個不同的明文不會得到相同的輸出值

(2)根據輸出值,不能得到原始的明文,即其過程不可逆

3.MD5的應用

由於MD5加密演算法具有較好的安全性,而且免費,因此該加密演算法被廣泛使用

主要運用在數字簽名、文件完整性驗證以及口令加密等方面

4.MD5破解

MD5解密網站:http://www.cmd5.com

5.MD5改進

現在的MD5已不再是絕對安全,對此,可以對MD5稍作改進,以增加解密的難度

加鹽(Salt):在明文的固定位置插入隨機串,然後再進行MD5

先加密,後亂序:先對明文進行MD5,然後對加密得到的MD5串的字元進行亂序

總之宗旨就是:黑客就算攻破了資料庫,也無法解密出正確的明文

代碼示例:

復制代碼 代碼如下:

#import "HMViewController.h"

#import "NSString+Hash.h"

#define Salt @"fsdhjkfhjksdhjkfjhkd546783765"

@interface HMViewController ()

@end

@implementation HMViewController

- (void)viewDidLoad

{

[super viewDidLoad];

[self digest:@"123"]; //

[self digest:@"abc"];

[self digest:@"456"];

}

/**

* 直接用MD5加密

*/

- (NSString *)digest:(NSString *)str

{

NSString *anwen = [str md5String];

NSLog(@"%@ - %@", str, anwen);

return anwen;

}

/**

* 加鹽

*/

- (NSString *)digest2:(NSString *)str

{

str = [str stringByAppendingString:Salt];

NSString *anwen = [str md5String];

NSLog(@"%@ - %@", str, anwen);

return anwen;

}

/**

* 多次MD5

*/

- (NSString *)digest3:(NSString *)str

{

NSString *anwen = [str md5String];

anwen = [anwen md5String];

NSLog(@"%@ - %@", str, anwen);

return anwen;

}

/**

* 先加密, 後亂序

*/

- (NSString *)digest4:(NSString *)str

{

NSString *anwen = [str md5String];

// 注冊: 123 ----

// 登錄: 123 ---

NSString *header = [anwen substringToIndex:2];

NSString *footer = [anwen substringFromIndex:2];

anwen = [footer stringByAppendingString:header];

NSLog(@"%@ - %@", str, anwen);

return anwen;

}

@end

(1)直接使用MD5加密(去MD5解密網站即可破解)

(2)使用加鹽(通過MD5解密之後,很容易發現規律)

(3)多次MD5加密(使用MD5解密之後,發現還是密文,那就接著MD5解密)

(4)先加密,後亂序(破解難度增加)

三、注冊和驗證的數據處理過程

1.提交隱私數據的安全過程 – 注冊

2.提交隱私數據的安全過程 – 登錄

4. IOS AES加密

AES加密有四種工作模式:ECB、CBC、CFB和OFB,其中IOS支持ECB(kCCOptionPKCS7Padding 對應Java中的kCCOptionPKCS5Padding)和CBC(kCCOptionECBMode)

AES是開發中常用的加密演算法之一。然而由於前後端開發使用的語言不統一,導致經常出現前端加密而後端不能解密的情況出現。然而無論什麼語言系統,AES的演算法總是相同的, 因此導致結果不一致的原因在於 加密設置的參數不一致 。於是先來看看在兩個平台使用AES加密時需要統一的幾個參數。

參考: https://welkinx.com/2016/07/30/10/

ios中使用AES128位 ECB模式加密 結果轉換16進制

https://tieba..com/p/4581819586

與伺服器通訊的時候,除了確定密鑰外,加密模式和填充方式也要確定。第一個例子中,就是使用了kCCOptionPKCS7Padding加密模式,並且有IV(初始向量),而第二個例子中使用了ECB(沒有補碼方式)。

此外也要注意轉碼後的密文是轉成16進制,還是base64編碼。

參考鏈接:
http://blog.51cto.com/ciphertext/1420338
https://welkinx.com/2016/07/30/10/
https://tieba..com/p/4581819586

5. ios加密機制是什麼為什麼無法破解

用過蘋果產品的年輕朋友們都知道,不管是手機,還是電腦,都會有著相應的iOS加密機制。這種加密機制能夠很好的保護大家的隱私,而且也非常的安全。其實根據小編了解到的消息可以得知,這種加密機制就是利用整個存儲晶元進行加密,然後再通過鎖屏密碼以及其他的一些東西,因此生成一個偽隨機數。之所以無法破解,是因為晶元牢固封裝在主板上。

因為小編自己就是蘋果手機,如果輸入鎖屏密碼錯誤達到了一定的次數之後,手機就會啟動iOS加密機制,把所有的輸入擦除掉。而且蘋果全屏加密的密鑰是儲存在一個非常特殊的空間裡面,其他人是無法發現的,即使被遠程擦除掉,但是永遠都拿不到鑰匙。如果自己需要保密的東西比較多,或者想要隱藏的東西比較多,小編還是建議大家購買蘋果產品的,雖然價格有些貴,但是使用起來真的非常好。

6. 介紹iOS中MD5加密演算法的使用

前言

軟體開發過程中,對數據進行加密是保證數據安全的重要手段,常見的加密有Base64加密和MD5加密。Base64加密是可逆的,MD5加密目前來說一般是不可逆的。

MD5生成的是固定的128bit,即128個0和1的二進制位,而在實際應用開發中,通常是以16進制輸出的,所以正好就是32位的16進制,說白了也就是32個16進制的數字。

MD5主要特點是 不可逆,相同數據的MD5值肯定一樣,不同數據的MD5值不一樣(也不是絕對的,但基本是不能一樣的)。

MD5演算法還具有以下性質:

1、壓縮性:任意長度的數據,算出的MD5值長度都是固定的。

2、容易計算:從原數據計算出MD5值很容易。

3、抗修改性:對原數據進行任何改動,哪怕只修改1個位元組,所得到的MD5值都有很大區別。

4、弱抗碰撞:已知原數據和其MD5值,想找到一個具有相同MD5值的數據(即偽造數據)是非常困難的。

5、強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD5值,是非常困難的。

6、MD5加密是不可解密的,但是網上有一些解析MD5的,那個相當於一個大型的資料庫,通過匹配MD5去找到原密碼。所以,只要在要加密的字元串前面加上一些字母數字元號或者多次MD5加密,這樣出來的結果一般是解析不出來的。

MD5的應用:

由於MD5加密演算法具有較好的安全性,而且免費,因此該加密演算法被廣泛使用

大多數的'登錄功能向後台提交密碼時都會使用到這種演算法

注意點:

(1)一定要和後台開發人員約定好,MD5加密的位數是16位還是32位(大多數都是32位的),16位的可以通過32位的轉換得到。

(2)MD5加密區分 大小寫,使用時要和後台約定好。

MD5解密:

解密網站:http://www.cmd5.com/

為了讓MD5碼更加安全 涌現了很多其他方法 如加鹽。 鹽要足夠長足夠亂 得到的MD5碼就很難查到。

終端代碼:$ echo -n abc|openssl md5 給字元串abc加密、

蘋果包裝了MD5加密的方法,使用起來十分的方便。

#import@interface MD5Encrypt : NSObject// MD5加密/**由於MD5加密是不可逆的,多用來進行驗證*/// 32位小寫+(NSString *)MD5ForLower32Bate:(NSString *)str;// 32位大寫+(NSString *)MD5ForUpper32Bate:(NSString *)str;// 16為大寫+(NSString *)MD5ForUpper16Bate:(NSString *)str;// 16位小寫+(NSString *)MD5ForLower16Bate:(NSString *)str;@end

#import "MD5Encrypt.h"#import@implementation MD5Encrypt#pragma mark - 32位 小寫+(NSString *)MD5ForLower32Bate:(NSString *)str{ //要進行UTF8的轉碼 const char* input = [str UTF8String]; unsigned char result[CC_MD5_DIGEST_LENGTH]; CC_MD5(input, (CC_LONG)strlen(input), result); NSMutableString *digest = [NSMutableString stringWithCapacity:CC_MD5_DIGEST_LENGTH * 2]; for (NSInteger i = 0; i < CC_MD5_DIGEST_LENGTH; i++) { [digest appendFormat:@"%02x", result[i]]; } return digest;}#pragma mark - 32位 大寫+(NSString *)MD5ForUpper32Bate:(NSString *)str{ //要進行UTF8的轉碼 const char* input = [str UTF8String]; unsigned char result[CC_MD5_DIGEST_LENGTH]; CC_MD5(input, (CC_LONG)strlen(input), result); NSMutableString *digest = [NSMutableString stringWithCapacity:CC_MD5_DIGEST_LENGTH * 2]; for (NSInteger i = 0; i < CC_MD5_DIGEST_LENGTH; i++) { [digest appendFormat:@"%02X", result[i]]; } return digest;}#pragma mark - 16位 大寫+(NSString *)MD5ForUpper16Bate:(NSString *)str{ NSString *md5Str = [self MD5ForUpper32Bate:str]; NSString *string; for (int i=0; i<24; i++) { string=[md5Str substringWithRange:NSMakeRange(8, 16)]; } return string;}#pragma mark - 16位 小寫+(NSString *)MD5ForLower16Bate:(NSString *)str{ NSString *md5Str = [self MD5ForLower32Bate:str]; NSString *string; for (int i=0; i<24; i++) { string=[md5Str substringWithRange:NSMakeRange(8, 16)]; } return string;}@end

7. iOSRSA加密和SHA驗簽

RSA是一種非對稱加密演算法,常用來對傳輸數據進行加密,配合上數字摘要演算法,也可以進行文字簽名。

padding即填充方式,由於RSA加密演算法中要加密的明文是要比模數小的,padding就是通過一些填充方式來限制明文的長度。後面會詳細介紹padding的幾種模式以及分段加密。

加密:公鑰放在客戶端,並使用公鑰對數據進行加密,服務端拿到數據後用私鑰進行解密;

加簽:私鑰放在客戶端,並使用私鑰對數據進行加簽,服務端拿到數據後用公鑰進行驗簽。

前者完全為了加密;後者主要是為了防惡意攻擊,防止別人模擬我們的客戶端對我們的伺服器進行攻擊,導致伺服器癱瘓。

RSA使用「密鑰對」對數據進行加密解密,在加密解密前需要先生存公鑰(Public Key)和私鑰(Private Key)。

公鑰(Public key): 用於加密數據. 用於公開, 一般存放在數據提供方, 例如iOS客戶端。

私鑰(Private key): 用於解密數據. 必須保密, 私鑰泄露會造成安全問題。

iOS中的Security.framework提供了對RSA演算法的支持,這種方式需要對密匙對進行處理, 根據public key生成證書, 通過private key生成p12格式的密匙

首先我們要會生成RSA密鑰文件,現在一步步的來給大家展示一下,如何生成我們所需的公鑰和私鑰文件:

$ openssl genrsa -out private.pem 1024

openssl:是一個自由的軟體組織,專注做加密和解密的框架。

genrsa:指定了生成了演算法使用RSA

-out:後面的參數表示生成的key的輸入文件

1024:表示的是生成key的長度,單位位元組(bits)

$ openssl req -new -key private.pem -out rsacert.csr

可以拿著這個文件去數字證書頒發機構(即CA)申請一個數字證書。CA會給你一個新的文件cacert.pem,那才是你的數字證書。(要收費的)

$ openssl x509 -req -days 3650 -in rsacert.csr -signkey private.pem -out rsacert.crt

509是一種非常通用的證書格式。

將用上面生成的密鑰privkey.pem和rsacert.csr證書請求文件生成一個數字證書rsacert.crt。這個就是公鑰

$ openssl x509 -outform der -in rsacert.crt -out rsacert.der

注意: 在 iOS開發中,公鑰是不能使用base64編碼的,上面的命令是將公鑰的base64編碼字元串轉換成二進制數據

在iOS使用私鑰不能直接使用,需要導出一個p12文件。下面命令就是將私鑰文件導出為p12文件。

$ openssl pkcs12 -export -out p.p12 -inkey private.pem -in rsacert.crt

IOS客戶端的加解密首先我們需要導入Security.framework,

在ios中,我們主要關注四個函數

RSA演算法有2個作用一個是加密一個是加簽。從這幾個函數中,我們可以看到,我們第一種是使用公鑰能在客戶端:加密數據,以及伺服器端用私鑰解密。

第二個就是用私鑰在客戶端加簽,然後用公鑰在伺服器端用公鑰驗簽。第一種完全是為了加密,第二種是為了放抵賴,就是為了防止別人模擬我們的客戶端來攻擊我們的伺服器,導致癱瘓。

(1)獲取密鑰,這里是產生密鑰,實際應用中可以從各種存儲介質上讀取密鑰 (2)加密 (3)解密

(1)獲取密鑰,這里是產生密鑰,實際應用中可以從各種存儲介質上讀取密鑰 (2)獲取待簽名的Hash碼 (3)獲取簽名的字元串 (4)驗證

(1)私鑰用來進行解密和簽名,是給自己用的。

(2)公鑰由本人公開,用於加密和驗證簽名,是給別人用的。

(3)當該用戶發送文件時,用私鑰簽名,別人用他給的公鑰驗證簽名,可以保證該信息是由他發送的。當該用戶接受文件時,別人用他的公鑰加密,他用私鑰解密,可以保證該信息只能由他接收到。

使用事例:

Demo鏈接

8. iOS之MD5加密、加鹽

MD5加密:HASH演算法一種、 是生成32位的數字字母混合碼。
特點:
1、任意數據得出的MD5值長度都是32
2、對原數據進行任何改動,所得到的MD5值都有很大區別

應用:
主要運用在數字簽名、口令加密等方面

MD5改進(加鹽等):
現在的MD5已不再是絕對安全,對此,可以對MD5稍作改進,以增加解密的難度
加鹽(Salt):在明文的固定位置插入隨機串,然後再進行MD5

寫一個NSString分類,NSString+wxMD5

md5解密網站: https://www.cmd5.com
使用示例

9. IOS中怎麼做RSA加密演算法

RSA加密以及解密實現步驟:

1、使用openssl生成密匙對。

代碼如下:(代碼源於github開源社區)

#!/usr/bin/envbash
echo"GeneratingRSAkeypair..."
echo"1024RSAkey:private_key.pem"
opensslgenrsa-outprivate_key.pem1024

echo":rsaCertReq.csr"
opensslreq-new-keyprivate_key.pem-outrsaCertReq.csr

echo"createcertificationusingx509:rsaCert.crt"
opensslx509-req-days3650-inrsaCertReq.csr-signkeyprivate_key.pem-outrsaCert.crt

echo"createpublic_key.derForIOS"
opensslx509-outformder-inrsaCert.crt-outpublic_key.der

echo"createprivate_key.p12ForIOS.Pleaserememberyourpassword.ThepasswordwillbeusediniOS."
opensslpkcs12-export-outprivate_key.p12-inkeyprivate_key.pem-inrsaCert.crt

echo"creatersa_public_key.pemForJava"
opensslrsa-inprivate_key.pem-outrsa_public_key.pem-pubout
echo"createpkcs8_private_key.pemForJava"
opensslpkcs8-topk8-inprivate_key.pem-outpkcs8_private_key.pem-nocrypt

echo"finished."

2、載入證書後即可進行加密演算法。

代碼:

RSAEncryptor*rsa=[[RSAEncryptoralloc]init];

NSLog(@"encryptorusingrsa");
NSString*publicKeyPath=[[NSBundlemainBundle]pathForResource:@"public_key"ofType:@"der"];
NSLog(@"publickey:%@",publicKeyPath);
[rsaloadPublicKeyFromFile:publicKeyPath];

NSString*securityText=@"hello~";
NSString*encryptedString=[rsarsaEncryptString:securityText];
NSLog(@"encrypteddata:%@",encryptedString);

對應解密代碼:

NSLog(@"decryptorusingrsa");
[rsaloadPrivateKeyFromFile:[[NSBundlemainBundle]pathForResource:@"private_key"ofType:@"p12"]password:@"123456"];
NSString*decryptedString=[rsarsaDecryptString:encryptedString];
NSLog(@"decrypteddata:%@",decryptedString);

RSA基本原理:

RSA使用"秘匙對"對數據進行加密解密.在加密解密數據前,需要先生成公鑰(public key)和私鑰(private key)。

公鑰(public key): 用於加密數據. 用於公開, 一般存放在數據提供方, 例如iOS客戶端。

私鑰(private key): 用於解密數據. 必須保密, 私鑰泄露會造成安全問題。

熱點內容
java16進制字元串 發布:2025-02-05 10:38:13 瀏覽:643
創業團隊配置有哪些 發布:2025-02-05 10:37:40 瀏覽:630
王者鍵盤怎麼設置安卓 發布:2025-02-05 10:32:01 瀏覽:373
阿里雲輕量伺服器ip搭建 發布:2025-02-05 10:24:46 瀏覽:486
編程高精度 發布:2025-02-05 10:22:28 瀏覽:230
使命召喚如何配置爆炸狙 發布:2025-02-05 10:08:12 瀏覽:143
java訪問共享目錄 發布:2025-02-05 10:03:56 瀏覽:281
行車記錄儀存儲卡多大合適 發布:2025-02-05 09:35:21 瀏覽:112
oppo手機鎖屏密碼忘了怎麼辦 發布:2025-02-05 09:33:50 瀏覽:124
phprsa演算法 發布:2025-02-05 09:33:48 瀏覽:231