不對稱加密演算法
分為三類:
1、對稱加密;
2、不對稱加密;
3、不可逆加密。
對稱加密是指加密密鑰和解密密鑰相同;
不對稱加密演算法使用不同的加密密鑰和解密密鑰;
不可逆加密演算法的特徵是加密過程不需要密鑰,並且經過加密的數據無法被解密,只有同樣輸入的輸入數據經過同樣的不可逆演算法才能得到同樣的加密數據。
B. 非對稱加密演算法
如果要給世界上所有演算法按重要程度排個序,那我覺得「公鑰加密演算法」一定是排在最前邊的,因為它是現代計算機通信安全的基石,保證了加密數據的安全。
01 對稱加密演算法
在非對稱加密出現以前,普遍使用的是對稱加密演算法。所謂對稱加密,就是加密和解密是相反的操作,對數據進行解密,只要按加密的方式反向操作一遍就可以獲得對應的原始數據了,舉一個簡單的例子,如果要對字元串"abc"進行加密,先獲取它們的ANSCII碼為:97 98 99;密鑰為+2,加密後的數據就是:99 100 101,將密文數據發送出去。接收方收到數據後對數據進行解密,每個數據減2,就得到了原文。當然這只是一個非常簡單的例子,真實的對稱加密演算法會做得非常復雜,但這已經能夠說明問題了。
這樣的加密方法有什麼缺點呢?首先缺點一:密鑰傳遞困難;想想看如果兩個人,分別是Bob和Alice,Bob要給Alice發消息,那Bob就要把密鑰通過某種方式告訴Alice,有什麼可靠的途徑呢?打電話、發郵件、寫信...等等方式好像都不靠譜,都有被竊取的風險,也只有兩人見面後當面交流這一種方式了;缺點二:密鑰數量會隨著通信人數的增加而急劇增加,密鑰管理將會是一個非常困難的事情。
02 非對稱加密演算法
1976年,兩位美國計算機學家,提出了Diffie-Hellman密鑰交換演算法。這個演算法的提出了一種嶄新的構思,可以在不直接傳遞密鑰的情況下,完成解密。這個演算法啟發了其他科學家,讓人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應的關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式就是「非對稱加密演算法」。
演算法大致過程是這樣的:
(1)乙方 生成兩把密鑰(公鑰和私鑰)。公鑰是公開的,任何人都可以獲得,私鑰則是保密的。
(2)甲方獲取乙方的公鑰,然後用它對信息加密。
(3)乙方得到加密後的信息,用私鑰解密。
如果公鑰加密的信息只有私鑰解得開,那麼只要私鑰不泄漏,通信就是安全的。
03 RSA非對稱加密演算法
1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。
從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。這種演算法非常可靠,密鑰越長,它就越難破解。根據已經披露的文獻,目前被破解的最長RSA密鑰是768個二進制位。也就是說,長度超過768位的密鑰,還無法破解(至少沒人公開宣布)。因此可以認為,1024位的RSA密鑰基本安全,2048位的密鑰極其安全。
公鑰加密 -> 私鑰解密
只有私鑰持有方可以正確解密,保證通信安全
私鑰加密 -> 公鑰解密
所有人都可以正確解密,信息一定是公鑰所對應的私鑰持有者發出的,可以做簽名
04 質數的前置知識
RSA的安全性是由大數的質因數分解保證的。下面是一些質數的性質:
1、任意兩個質數構成素質關系,比如:11和17;
2、一個數是質數,另一個數只要不是前者的倍數,兩者就構成素質關系,比如3和10;
3、如果兩個數之中,較大的那個是質數,則兩者構成互質關系,比如97和57;
4、1和任意一個自然數都是互質關系,比如1和99;
5、p是大於1的整數,則p和p-1構成互質關系,比如57和56;
6、p是大於1的奇數,則p和p-2構成互質關系,比如17和15
05 RSA密鑰生成步驟
舉個「栗子「,假如通信雙方為Alice和Bob,Alice要怎麼生成公鑰和私鑰呢?
St ep 1:隨機選擇兩個不相等的質數p和q;
Alice選擇了3和11。(實際情況中,選擇的越大,就越難破解)
S tep 2 :計算p和q的乘積n;
n = 3*11 = 33,將33轉化為二進制:100001,這個時候密鑰長度就是6位。
Step 3 :計算n的歐拉函數φ(n);
因為n可以寫為兩個質數相乘的形式,歐拉函數對於可以寫成兩個質數形式有簡單計算方式
φ(n) = (p-1)(q-1)
Step 4 :隨機選擇一個整數e,條件是1< e < φ(n),且e與φ(n) 互質;
愛麗絲就在1到20之間,隨機選擇了3
Step 5 :計算e對於φ(n)的模反元素d
所謂模反元素,就是指有一個整數d,可以使得ed被φ(n)除的余數為1
Step 6 :將n和e封裝成公鑰,n和d封裝成私鑰;
在上面的例子中,n=33,e=3,d=7,所以公鑰就是 (33,3),私鑰就是(33, 7)。
密鑰生成步驟中,一共出現了六個數字,分別為:
素質的兩個數p和q,乘積n,歐拉函數φ(n),隨機質數e,模反元素d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的,可以刪除。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。
那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論是如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
BUT!
大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。
維基網路這樣寫道:
"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。
假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有較短的RSA密鑰才可能被暴力破解。到現在為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。
只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"
06 RSA加密和解密過程
1、加密要用公鑰(n,e)
假設鮑勃要向愛麗絲發送加密信息m,他就要用愛麗絲的公鑰 (n,e) 對m進行加密。
所謂"加密",就是算出下式的c:
愛麗絲的公鑰是 (33, 3),鮑勃的m假設是5,那麼可以算出下面的等式:
於是,c等於26,鮑勃就把26發給了愛麗絲。
2、解密要用私鑰(n,d)
愛麗絲拿到鮑勃發來的26以後,就用自己的私鑰(33, 7) 進行解密。下面的等式一定成立(至於為什麼一定成立,證明過程比較復雜,略):
也就是說,c的d次方除以n的余數為m。現在,c等於26,私鑰是(33, 7),那麼,愛麗絲算出:
因此,愛麗絲知道了鮑勃加密前的原文就是5。
至此,加密和解密的整個過程全部完成。整個過程可以看到,加密和解密使用不用的密鑰,且不用擔心密鑰傳遞過程中的泄密問題,這一點上與對稱加密有很大的不同。由於非對稱加密要進行的計算步驟復雜,所以通常情況下,是兩種演算法混合使用的。
07 一些其它的
在Part 5的第五步,要求一定要解出二元一次方程的一對正整數解,如果不存在正整數解,這該怎麼辦?
擴展歐幾里得演算法給出了解答:
對於不完全為 0 的非負整數 a,b,gcd(a,b)表示 a,b 的最大公約數,必然存在整數對 x,y ,使得 gcd(a,b)=ax+by;
第五步其實等價於:ed - kφ(n) = 1, e與φ(n)又互質,形式上完全與擴展歐幾里得演算法的一致,所以一定有整數解存在。
Reference:
http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html
C. 非對稱加密演算法有哪些
RSA、Elgamal、背包演算法、Rabin、D-H、ECC橢圓曲線加密演算法。
非對稱加密(公鑰加密):指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。如果企業中有n個用戶,企業需要生成n對密鑰,並分發n個公鑰。假設A用B的公鑰加密消息,用A的私鑰簽名,B接到消息後,首先用A的公鑰驗證簽名,確認後用自己的私鑰解密消息。由於公鑰是可以公開的,用戶只要保管好自己的私鑰即可,因此加密密鑰的分發將變得十分簡單。同時,由於每個用戶的私鑰是唯一的,其他用戶除了可以通過信息發送者的公鑰來驗證信息的來源是否真實,還可以通過數字簽名確保發送者無法否認曾發送過該信息。
D. 現代密碼技術保護數據安全的方式是
現代密碼技術保護數據安全的方式是(D)。
A、把可讀信息轉變成不可理解的亂碼。
B、能夠檢測到信息被修改。
C、使人們遵守數字領域的規則。
D、以上都是。
答案:D。
現代密碼技術應用的應用局限是由其基本公設決定的,在現代條件下,對信息安全技術和產品的強烈社會需求,使得密碼技術應用從以往狹小、封閉的領域逐漸變得社會化、公開化、大眾化。這是新的形勢,也是現代密碼技術需要解決的新的難題。
密碼體制是否公開?
在密碼的設計中強調密碼體制不保密,在密碼實際應用中強調體制保密。實際情況是,密碼的廣泛商業應用給密碼體制的保密帶來極大的困難。國際上已有先例,為了不公開密碼體制,採用發行密碼晶元的做法。
但晶元解剖技術、逆向工程也發展迅猛,有時所謂的難度僅僅是成本問題。GSM安全方案的設計完全保密,而且所有的秘密信息都集成千SIM卡中。但近年來,安全事件時有發生,GSM的做法受到人們的非議。
E. 名詞解釋:對稱加密和非對稱加密
1.需要對加密和解密使用相同密鑰的加密演算法。由於其速度,對稱性加密通常在消息發送方需要加密大量數據時使用。對稱性加密也稱為密鑰加密。
所謂對稱,就是採用這種加密方法的雙方使用方式用同樣的密鑰進行加密和解密。密鑰實際上是一種演算法,通信發送方使用這種演算法加密數據,接收方在意同樣的演算法解密數據。
因此對稱式加密本身不是安全的。
常用的對稱加密有:
DES、IDEA、RC2、RC4、SKIPJACK演算法等
2.非對稱加密演算法中,加密密鑰不同於解密密鑰,加密密鑰公之於眾,誰都可以使用。解密密鑰只有解密人自己知道,分別稱為公開密鑰 (Public key) 和秘密密鑰 (Private key)。
F. 對稱加密演算法與非對稱加密演算法的特點及用途
對稱加密演算法
對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。
對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有des、idea和aes。
不對稱加密演算法
不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有rsa演算法和美國國家標准局提出的dsa。以不對稱加密演算法為基礎的加密技術應用非常廣泛。