hash在線加密
㈠ 2.哈希加密 & base64加密
一、哈希HASH
哈希(散列)函數 MD5 SHA1/256/512 HMAC
Hash的特點:
1.演算法是公開的
2.對相同數據運算,得到的結果是一樣的
3.對不同數據運算,如MD5得到的結果是128位,32個字元的十六進製表示,沒法逆運算
1.MD5加密
MD5加密的特點:
不可逆運算
對不同的數據加密的結果是定長的32位字元(不管文件多大都一樣)
對相同的數據加密,得到的結果是一樣的(也就是復制)。
抗修改性 : 信息「指紋」,對原數據進行任何改動,哪怕只修改一個位元組,所得到的 MD5 值都有很大區別.
弱抗碰撞 : 已知原數據和其 MD5 值,想找到一個具有相同 MD5 值的數據(即偽造數據)是非常困難的.
強抗碰撞: 想找到兩個不同數據,使他們具有相同的 MD5 值,是非常困難的
MD5 應用:
一致性驗證:MD5將整個文件當做一個大文本信息,通過不可逆的字元串變換演算法,產生一個唯一的MD5信息摘要,就像每個人都有自己獨一無二的指紋,MD5對任何文件產生一個獨一無二的數字指紋。
那麼問題來了,你覺得這個MD5加密安全嗎?其實是不安全的,不信的話可以到這個網站試試:md5破解網站。可以說嗖地一下就破解了你的MD5加密!
2.SHA加密
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於2^64位的消息,SHA1會產生一個160位的消息摘要。當接收到消息的時候,這個消息摘要可以用來驗證數據的完整性。在傳輸的過程中,數據很可能會發生變化,那麼這時候就會產生不同的消息摘要。當讓除了SHA1還有SHA256以及SHA512等。
二、base64加密
1.Base64說明
描述:Base64可以成為密碼學的基石,非常重要。
特點:可以將任意的二進制數據進行Base64編碼
結果:所有的數據都能被編碼為並只用65個字元就能表示的文本文件。
65字元:A~Z a~z 0~9 + / =
對文件進行base64編碼後文件數據的變化:編碼後的數據~=編碼前數據的4/3,會大1/3左右。
2.命令行進行Base64編碼和解碼
編碼:base64 123.png -o 123.txt
解碼:base64 123.txt -o test.png -D
2.Base64編碼原理
1)將所有字元轉化為ASCII碼;
2)將ASCII碼轉化為8位二進制;
3)將二進制3個歸成一組(不足3個在後邊補0)共24位,再拆分成4組,每組6位;
4)統一在6位二進制前補兩個0湊足8位;
5)將補0後的二進制轉為十進制;
6)從Base64編碼表獲取十進制對應的Base64編碼;
處理過程說明:
a.轉換的時候,將三個byte的數據,先後放入一個24bit的緩沖區中,先來的byte占高位。
b.數據不足3byte的話,於緩沖區中剩下的bit用0補足。然後,每次取出6個bit,按照其值選擇查表選擇對應的字元作為編碼後的輸出。
c.不斷進行,直到全部輸入數據轉換完成。
㈡ 通信安全:哈希、加密、證書、簽名、密鑰協商、ECDH、TLS、DTLS
哈希也叫散列,是把任意長度的輸入通過散列演算法變換成固定長度的輸出,該輸出就是散列值,也叫摘要(Digest)。
這種轉換是一種 壓縮映射。 也就是,散列值的空間通常遠小於輸入的空間,不同的輸入可能會散列成相同的輸出,所以不可能從散列值來確定唯一的輸入值,但如果輸出的位數足夠,不同輸入散列成相同輸出的概率非常非常小。
簡單的說, 散列就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的過程 。
散列是不可逆的 ,也就是無法通過輸出還原輸入,此特性常被用於密碼保存。
SHA-512、MD5等都是著名的散列函數,MD5生成的散列碼是128位,甚至MD5就是哈希的同名詞,你可以通過網站:https://passwordsgenerator.net/sha512-hash-generator/ 在線計算哈希。
散列有什麼用?
加密就是把 明文變成密文的過程,解密就是反方向把密文變成明文 。
比如著名的 凱撒密碼 ,就是把每個字對應到另一個,這樣的話,只要有密碼本,就能對照完成加解密。比如最簡單的,對於英文26個字母,每個字母右移3個,abc變成def,這也是一種加密,當然這種加密很簡單,很容易被破譯。
而諸如AES(高級加密標准)、3DES(三重數據加密演算法)則被公認為很難破解,不過山東大學女教授王小雲很厲害,破解了MD5和SHA-1,迫使加密標准升級,最終當上了院士。
對稱加密
對稱加密就是加解密的密鑰是一樣的,優點是快,這也是傳統的加密方式,像AES、3DES都是對稱加密。
非對稱加密
非對稱加密用於加解密的密鑰不一樣,有2個密鑰,公鑰和私鑰,公鑰可以公開,私鑰妥善保管。RSA、ECC(橢圓曲線加密演算法)、DH(密鑰交換演算法)這些都是非對稱加密。
非對稱加密很慢,有多慢?相比對稱加密慢1000倍,因為慢,所以它常用於密鑰協商(Handshake),協商出會話密鑰後,再用對稱密鑰加密通信數據。
1976年,Whitfield Diffie和Martin Hellman首次提出了非對稱加密的概念,該演算法被稱為Diffie-Hellman密鑰交換。然後在1978年,麻省理工學院的Ron Rivest,Adi Shamir和Leonard Adleman發表了RSA 演算法。這些都可以被視為非對稱加密的基礎。
非對稱加密也稱為公鑰基礎結構,又稱PKI。 非對稱加密的提出是密碼學上的一次革命,影響深遠。
非對稱加密演算法用私鑰加密,用公鑰解密,或者用公鑰加密,用私鑰解密。
證書就是為了證明我是我,比如你要訪問中國銀行網站,但中行官網如何證明它是中行官網呢?答案就是數字證書。
CA是數字證書中心,伺服器需要找CA做認證,讓CA給自己頒布數字證書,數字證書內一般包含服務的一些信息、以及伺服器的公鑰,通過CA的私鑰加密後,產生的數字證書,因為CA的權威性,且它的公鑰天下皆知,所以,如果你能用CA的公鑰解開證書,那便可證明該證書一定是CA頒發的,要不然它不會有CA的私鑰,也便沒法產生可用CA公鑰解密的證書。
所以,由此可見,數字證書用到了非對稱加密。
日常生活中也有簽名,每個人的筆跡是不一樣的,你刷卡消費後在賬單簽上大名,服務員校驗過之後保存下來,你哪天賴賬,便可以有簽名為證,因為別人寫的字跟你的筆跡終有差別。
那數字簽名是什麼呢?比如a發一封email,接收方怎麼證明這封信是a寫的?
本質上,數字簽名也是利用了非對稱加密。
前面講了,非對稱加密有公鑰和私鑰,如果發生方用私鑰加密,然後接收方用發送方的公鑰可以解密,那便可以證明是從某發送方發送的,因為別人拿不到你的私鑰,也便無法用你的私鑰加密,你不能抵賴。
數字簽名通常先對內容算哈希,產生內容摘要,再用私鑰加密,得到簽名。
下面舉一個例子來說明這幾個問題:
張三有2把鑰匙,一把公鑰,公告天下,一把私鑰,妥善保管,只有自己知道,很明顯,非對稱加密。
李四給張三寫信,寫完之後,用張三的公鑰加密,通過郵局寄給張三,即使郵遞員拆開信封看,他也看不懂,因為內容是密文,只有張三的密鑰才能解密。
張三收到信後,用私鑰解密,可以正常閱讀。
現在張三要給李四回信,寫完後,用hash函數生成摘要digest。
然後張三,再用私鑰對摘要加密,生成數字簽名signature。
然後把簽名附在信的下面,一起發給李四。
過程是:信明文 -> hash -> digist -> 私鑰加密 -> signature。
李四收到回信後,用張三的公鑰對數字簽名解密,得到摘要,由此證明,信確實是張三發出的,為什麼?因為如果不是張三發的,那寫信的人就沒有張三私鑰,用別的私鑰加密得到的簽名,是無法用張三的公鑰解開的。
李四,再對信的內容做hash,得到摘要,與上一步得到的摘要對比,如果一致,則證明信的內容沒有被修改過,信的內容是完整的。
復雜的情況出現了。
王五,用自己的公鑰替換李四保存的張三的公鑰,也就是王五欺騙了李四,李四誤把王五的公鑰當張三的公鑰,這樣一來,王五就能冒充張三給李四寫信(王五用自己的私鑰加密)。
問題是什麼?問題是李四不能確信自己保存的公鑰真的是張三的公鑰。如果客戶端電腦上存的工商銀行官網的公鑰,實際上是騙子公司的公鑰,那就麻煩大了。
怎麼破?讓張三去認證中心CA(Certificate Authority),為公鑰做認證,怎麼做呢?CA中心用自己的私鑰,對張三的公鑰和其他相關信息一起加密,生成數字證書(Digital Certificate)。
張三拿到數字證書後,以後給李四回信,在簽名的同時,附帶上數字證書。
李四收到信之後,從CA的公鑰解開數字證書,取出張三的公鑰(一定是真的),然後就能放心的愉快的按之前的流程解開簽名了。
數字證書加入後,核心區別就是張三的公鑰不再保存在李四處,而是通過數字證書下發。
為什麼數字證書里的張三的公鑰一定是真的呢?因為CA是權威機構,假設全世界就一家(其實不止,但也不多),它的公鑰天下盡知,就是固定的串,所以能用CA公鑰解開的證書,一定是CA頒布的,因為CA用它的私鑰加密產生的證書。很明顯,非對稱加密能用於證明我是我。
密鑰交換演算法
著名的DH密鑰交換演算法,這個演算法很有意思,也很巧妙,簡而言之,就是通信雙方交換一點信息(不怕被偷看到),然後就在兩端,分布產生出一個相同的密鑰,神奇啊。
有一個很有意思的例子。
Alice和Bob要協商出一個公共的顏色,他們可以交換信息,但交換的信息,可以被偷看到,怎麼辦?既能協商出公共顏色,又不能讓別人知道呢。
密鑰交換演算法的原理跟這個差不多,網上有大量的資料講述這個問題,我覺得理解了上面的例子,再看ECDH便也不難了。
眾所周知http是互聯網協議,但是它不夠安全,所以後面有改進版的https,其實就是多了一個TLS,這個是傳輸層加密,本質上,就是通過handshake,協商出一個會話密鑰,後面的數據傳遞,都用這個密鑰做對稱加解密。
我們經常講安全通道,其實也就是協商出一個會話密鑰,他並不神秘。胡亂放幾張圖片吧。
為了減少這幾個RTT,又想了各種辦法,然後復用連接的話,就可以做到0RTT,1RTT了。
就說這些吧,最後拋幾個名詞,有興趣自行網路學習:DTLS,HMAC,AEAD,重放攻擊,放大攻擊,是不是很高端?
㈢ 【以太坊易錯概念】nonce, 公私鑰和地址,BASE64/BASE58,
以太坊里的nonce有兩種意思,一個是proof of work nonce,一個是account nonce。
在智能合約里,nonce的值代表的是該合約創建的合約數量。只有當一個合約創建另一個合約的時候才會增加nonce的值。但是當一個合約調用另一個合約神棚中的method時 nonce的值是不變的。
在以太坊中nonce的值可以這樣來獲取(其實也就是屬於一個賬戶的交易數量):
但是這個方法只能獲取交易once的值。仔茄目前是沒有內置方法來訪問contract中的nonce值的
通過橢圓曲線演算法生成鑰匙對(公鑰和私鑰),以太坊採用的是secp256k1曲線,
公鑰採用uncompressed模式,生成的私鑰為長度32位元組的16進制字串,公鑰為長度64的公鑰字串。公鑰04開頭。
把公鑰去掉04,剩下的進行keccak-256的哈希,得到長度64位元組的16進制字串,丟掉前面24個,拿後40個,再加上"0x",即為以太坊地址。
整個過程可以歸納為:
2)有些網關或系統只能使用ASCII字元。Base64就是用來將非ASCII字元的數據轉換成ASCII字元的一種方法,而且base64特別適合在http,mime協議下快速傳輸數據。Base64使用【字母azAZ數字09和+/】這64個字元編碼。原理是將3個位元組轉換成4個位元組(3 X 8) = 24 = (4 X 6)
當剩下的字元數量不足3個位元組時,則應使用0進行填充,相應的,輸出字元則使用'='佔位,因此編碼後輸出的文本末尾可能會出現1至2個'='。
1)Base58是用於Bitcoin中使用的一種獨特的編碼方式,主要用於產生Bitcoin的錢包地址。相比Base64,Base58不使用數字"0",字母大寫"O",字母大寫"I",和字母小寫"l",以及"+"和"/"符號。
Base58Check是一種常用在比特幣中的Base58編碼格式,增加了錯誤校驗碼來檢查數據在轉錄中出現的錯誤。 校驗碼長4個位元組,添加到需要編碼的數據之後。校驗碼是從需要編碼的數據的哈希值中得到的,所以可以用來檢測並避免轉錄和輸入中產生的錯誤。使用 Base58check編碼格式時,編碼軟體會計算原始數據的校驗碼並和結果數據中自帶的校驗碼進行對比。二者不匹配則表明有錯誤產生,那麼這個 Base58Check格式的數據就是無效的。例如,一個錯誤比特幣地址就不會被錢游戚則包認為是有效的地址,否則這種錯誤會造成資金的丟失。
為了使用Base58Check編碼格式對數據(數字)進行編碼,首先我們要對數據添加一個稱作「版本位元組」的前綴,這個前綴用來明確需要編碼的數 據的類型。例如,比特幣地址的前綴是0(十六進制是0x00),而對私鑰編碼時前綴是128(十六進制是0x80)。 表4-1會列出一些常見版本的前綴。
接下來,我們計算「雙哈希」校驗碼,意味著要對之前的結果(前綴和數據)運行兩次SHA256哈希演算法:
checksum = SHA256(SHA256(prefix+data))
在產生的長32個位元組的哈希值(兩次哈希運算)中,我們只取前4個位元組。這4個位元組就作為校驗碼。校驗碼會添加到數據之後。
結果由三部分組成:前綴、數據和校驗碼。這個結果採用之前描述的Base58字母表編碼。下圖描述了Base58Check編碼的過程。
相同:
1) 哈希演算法、Merkle樹、公鑰密碼演算法
https://blog.csdn.net/s_lisheng/article/details/77937202?from=singlemessage
2)全新的 SHA-3 加密標准 —— Keccak
https://blog.csdn.net/renq_654321/article/details/79797428
3)在線加密演算法
http://tools.jb51.net/password/hash_md5_sha
4)比特幣地址生成演算法詳解
https://www.cnblogs.com/zhaoweiwei/p/address.html
5)Base58Check編碼實現示例
https://blog.csdn.net/QQ604666459/article/details/82419527
6) 比特幣交易中的簽名與驗證
https://www.jianshu.com/p/a21b7d72532f
㈣ 怎麼用哈希函數給資料庫中的密碼加密
可以使用 System.Security.Cryptography 名稱空間中包含的加密資源方便地生成和比較哈希值。 因為所有哈希函數的輸入類型都是 Byte[],所以必須先將源數據轉換為位元組數組後再計算哈希值。 若要為一個字元串值創建哈希值,請按照下列步驟操作: 打開 Visual Studio .NET。 在 Microsoft C# 中新建控制台應用程序。Visual C# .NET 為您創建一個公用類以及一個空的 Main() 方法。 對 System、System.Security.Cryptography 和 System.Text 名稱空間使用 using 指令,這樣,在後面的代碼中就不需要限定這些名稱空間中的聲明了。這些語句必須放在所有其他聲明之前。 using System; using System.Security.Cryptography; using System.Text; 聲明一個字元串變數以存放源數據,並聲明兩個位元組數組(未定義大小)分別存放源位元組和得出的哈希值。 s
㈤ 哈希(hash) - 哈希演算法的應用
通過之前的學習,我們已經了解了哈希函數在散列表中的應用,哈希函數就是哈希演算法的一個應用。那麼在這里給出哈希的定義: 將任意長度的二進制值串映射為固定長度的二進制值串,這個映射規則就是哈希演算法,得到的二進制值串就是哈希值 。
要設計一個好的哈希演算法並不容易,它應該滿足以下幾點要求:
哈希演算法的應用非常廣泛,在這里就介紹七點應用:
有很多著名的哈希加密演算法:MD5、SHA、DES...它們都是通過哈希進行加密的演算法。
對於加密的哈希演算法來說,有兩點十分重要:一是很難根據哈希值反推導出原始數據;二是散列沖突的概率要很小。
當然,哈希演算法不可能排除散列沖突的可能,這用數學中的 鴿巢原理 就可以很好解釋。以MD5演算法來說,得到的哈希值為一個 128 位的二進制數,它的數據容量最多為 2 128 bit,如果超過這個數據量,必然會出現散列沖突。
在加密解密領域沒有絕對安全的演算法,衫基一般來說,只要解密的計算量極其龐大,我們就可以認為這種加密方法是較為安全的。
假設我們有100萬個圖片,如果我們在圖片中尋找某一個圖片是非常耗時的,這是我們就可以使用哈希演算法的原理為圖片設置唯一標識。比如,我們可以從圖片的二進制碼串開頭取100個位元組,從中間取100個位元組,從結尾取100個位元組,然後將它們合並,並使用哈希演算法計算得到一個哈希值,將其作為圖片的唯一標識。
使用這個唯一標識判斷圖片是否在圖庫中,這可以減少甚多工作量。
在傳輸消息的過程中,我們擔心通信數據被人篡改,這時就可以使用哈希函數進行數據校驗。比如BT協議中就使用哈希栓發進行數據校驗。
在散列表那一篇中我們就講過散列函數的應用,相比於其它應用,散列函數對於散列演算法沖突的要求低很多(我們可以通過開放定址法或鏈表法解決沖突),同時散列函數對於散列演算法是否能逆向解密也並不關心。
散列函數比較在意函數的執行效率,至於其它要求,在之前的我們已經講過,就不再贅述了。
接下來的三個應用主要是在分布式系統中的應用
復雜均衡的演算法很多,如何實現一個會話粘滯的負載均衡演算法呢?也就是說,我們需要在同一個客戶端上,在一次會話中的所有請求都路由到同一個伺服器上。
最簡單的辦法是我們根據客戶端的 IP 地址或會話 ID 創建一個映射關系。但是這樣很浪費內存,客戶端上線下線,伺服器擴容等都會導致映射失效,維護成本很大。
藉助哈希演算法,我們可以很輕松的解決這些問題:對客戶端的 IP 地址或會話 ID 計算哈希值,將取得的哈希值域伺服器的列表的大小進行取模運算,最後得到的值就是被路由到的伺服器的編號。
假設有一個非常大的日誌文件,裡面記錄了用戶的搜索關鍵詞,我們想要快速統計出每個關鍵詞被搜索的次數,該怎麼做呢?
分析一下,這個問題有兩個難點:一是搜索日誌很大,沒辦法放到一台機器的內存中;二是如果用一台機器處理這么大的數據,處理時間會很長。
針對這兩個難點,我們可以先對數據進行分片,然後使用多台機器處理,提高處理速度。具體思路:使用 n 台機器並行處理,從日誌文件中讀出每個搜索關鍵詞,通過哈希局銷函數計算哈希值,然後用 n 取模,最終得到的值就是被分配的機器編號。
這樣,相同的關鍵詞被分配到了相同的機器上,不同機器只要記錄屬於自己那部分的關鍵詞的出現次數,最終合並不同機器上的結果即可。
針對這種海量數據的處理問題,我們都可以採用多機分布式處理。藉助這種分片思路,可以突破單機內存桐塌游、CPU等資源的限制。
處理思路和上面出現的思路類似:對數據進行哈希運算,對機器數取模,最終將存儲數據(可能是硬碟存儲,或者是緩存分配)分配到不同的機器上。
你可以看一下上圖,你會發現之前存儲的數據在新的存儲規則下全部失效,這種情況是災難性的。面對這種情況,我們就需要使用一致性哈希演算法。
哈希演算法是應用非常廣泛的演算法,你可以回顧上面的七個應用感受一下。
其實在這里我想說的是一個思想: 用優勢彌補不足 。
例如,在計算機中,數據的計算主要依賴 CPU ,數據的存儲交換主要依賴內存。兩者一起配合才能實現各種功能,而兩者在性能上依然無法匹配,這種差距主要是: CPU運算性能對內存的要求遠高於現在的內存能提供的性能。
也就是說,CPU運算很快,內存相對較慢,為了抹平這種差距,工程師們想了很多方法。在我看來,散列表的使用就是利用電腦的高計算性能(優勢)去彌補內存速度(不足)的不足,你仔細思考散列表的執行過程,就會明白我的意思。
以上就是哈希的全部內容
㈥ 哈希加密演算法
MD5即Message-Digest Algorithm 5(信息摘要演算法5),是計算機廣泛使用的散列演算法之一。經MD2、MD3和MD4發展而來,誕生於20世紀90年代初。用於確保信息傳輸完整一致。雖然已被破解,但仍然具有較好的安全性,加之可以免費使用,所以仍廣泛運用於數字簽名、文件完整性驗證以及口令加密等領域。
演算法原理:
散列演算法得到的結果位數是有限的,比如MD5演算法計算出的結果字長為128位,意味著只要我們窮舉2^128次,就肯定能得到一組碰撞,下面讓我們來看看一個真實的碰撞案例。我們之所以說MD5過時,是因為它在某些時候已經很難表現出散列演算法的某些優勢——比如在應對文件的微小修改時,散列演算法得到的指紋結果應當有顯著的不同,而下面的程序說明了MD5並不能實現這一點。
而諸如此類的碰撞案例還有很多,上面只是原始文件相對較小的一個例子。事實上現在我們用智能手機只要數秒就能找到MD5的一個碰撞案例,因此,MD5在數年前就已經不被推薦作為應用中的散列演算法方案,取代它的是SHA家族演算法,也就是安全散列演算法(Secure Hash Algorithm,縮寫為SHA)。
SHA實際包括有一系列演算法,分別是SHA-1、SHA-224、SHA-256、SHA-384以及SHA-512。而我們所說的SHA2實際是對後面4中的統稱。各種SHA演算法的數據比較如下表,其中的長度單位均為位:
MD5和SHA1,它們都有4個邏輯函數,而在SHA2的一系列演算法中都採用了6個邏輯函數。
以SHA-1為例,演算法包括有如下的處理過程:
和MD5處理輸入方式相同
經過添加位數處理的明文,其長度正好為512位的整數倍,然後按512位的長度進行分組,可以得到一定數量的明文分組,我們用Y 0 ,Y 1 ,……Y N-1 表示這些明文分組。對於每一個明文分組,都要重復反復的處理,這些與MD5都是相同的。
而對於每個512位的明文分組,SHA1將其再分成16份更小的明文分組,稱為子明文分組,每個子明文分組為32位,我們且使用M[t](t= 0, 1,……15)來表示這16個子明文分組。然後需要將這16個子明文分組擴充到80個子明文分組,我們將其記為W[t](t= 0, 1,……79),擴充的具體方法是:當0≤t≤15時,Wt = Mt;當16≤t≤79時,Wt = ( W t-3 ⊕ W t-8 ⊕ W t-14 ⊕ W t-16 ) <<< 1,從而得到80個子明文分組。
所謂初始化緩存就是為鏈接變數賦初值。前面我們實現MD5演算法時,說過由於摘要是128位,以32位為計算單位,所以需要4個鏈接變數。同樣SHA-1採用160位的信息摘要,也以32位為計算長度,就需要5個鏈接變數。我們記為A、B、C、D、E。其初始賦值分別為:A = 0x67452301、B = 0xEFCDAB89、C = 0x98BADCFE、D = 0x10325476、E = 0xC3D2E1F0。
如果我們對比前面說過的MD5演算法就會發現,前4個鏈接變數的初始值是一樣的,因為它們本來就是同源的。
經過前面的准備,接下來就是計算信息摘要了。SHA1有4輪運算,每一輪包括20個步驟,一共80步,最終產生160位的信息摘要,這160位的摘要存放在5個32位的鏈接變數中。
在SHA1的4論運算中,雖然進行的就具體操作函數不同,但邏輯過程卻是一致的。首先,定義5個變數,假設為H0、H1、H2、H3、H4,對其分別進行如下操作:
(A)、將A左移5為與 函數的結果求和,再與對應的子明文分組、E以及計算常數求和後的結果賦予H0。
(B)、將A的值賦予H1。
(C)、將B左移30位,並賦予H2。
(D)、將C的值賦予H3。
(E)、將D的值賦予H4。
(F)、最後將H0、H1、H2、H3、H4的值分別賦予A、B、C、D
這一過程表示如下:
而在4輪80步的計算中使用到的函數和固定常數如下表所示:
經過4輪80步計算後得到的結果,再與各鏈接變數的初始值求和,就得到了我們最終的信息摘要。而對於有多個明文分組的,則將前面所得到的結果作為初始值進行下一明文分組的計算,最終計算全部的明文分組就得到了最終的結果。
㈦ 公鑰加密演算法/哈希演算法
公鑰加密演算法 也叫非對稱加密,它在加密和解密時使用的是不同的密鑰,具有這樣的特徵:
最常見的公鑰加密演算法是RSA公鑰加密演算法,也是簽名中普遍使用的演算法。其數學原理如下:
理論上 {n, e} 和 {n, d} 可以互換,任何一個都可以是公鑰陸激皮或者私鑰,加密和早差解密的函數也可以互換。但實踐中,一般固定設置 e = 65537(0x10001) ,相當於公開的一個約定,這樣一來 {n, e} 就只能作為公鑰使用。
哈希演算法
也叫散列或者摘要演算法,對一段任意長度的數據,通過一定的映射和計算,得到一個固定長度的值,這個值就被稱為這段數據的哈希值鉛銷(hash)。給定一個哈希演算法,它一定具有以下特徵:
常見的哈希演算法有: md5, sha1, sha256等,其中sha1長度為160bits,而sha256長度為256bits,二者相比,sha256的取值范圍更大,因此碰撞和破解的概率更低,也就相對更安全。
㈧ 密碼學HASH與對稱加密
Hash,一般翻譯做「散列」,也有直接音譯為「哈希」的,就是把任意長度的輸入通過散列演算法變換成固定長度的輸出,該輸出就是散列值。這種轉換是一種壓縮映射,也就是,散列值的空間通常遠小於輸入的空間,不同的輸入可能會散列成相同的輸出,所以不可能從散列值來確定唯一的輸入值。簡單的說就是一種將任意長度的消息壓縮到某一固定長度的消息摘要的函數。
MD5信息摘要演算法 (英語:MD5 Message-Digest Algorithm),一種被廣泛使用的 密碼散列函數 ,可以產生出一個128位(16 位元組 )的散列值(hash value),用於確保信息傳輸完整一致。2004年,證實MD5演算法無法防止碰撞(collision)(如網站: CMD5 ),因此不適用於安全性認證,如 SSL 公開密鑰認證或是 數字簽名 等用途。
MD5 是哈希演算法的一種。
密碼加密常見的有以下幾種方式:
HMAC是密鑰相關的哈希運算消息認證碼(Hash-based Message Authentication Code)的縮寫,並在 IPSec 和其他網路協議(如 SSL )中得以廣泛應用,現在已經成為事實上的Internet安全標准。它可以與任何迭代散列函數捆綁使用。
如上圖中,共有兩個流程:
授權設備登錄流程:
1、輸入賬號過後,就把賬號作為參數向伺服器發送請求
2、伺服器根據賬號生成對應的key,並傳遞給客戶端
3、客戶端拿到key,進行HMAC運算,並將運算結果的哈希值傳給伺服器
其他設備登錄流程:
1、輸入賬號過後,在本地緩存中找伺服器傳過來的key,有就登錄,沒有就把賬號作為參數向伺服器發送請求
2、伺服器要先看這個賬號是否開啟了設備鎖,沒有開啟就不允許登錄,開啟了,就向授權設備發送請求,是否授權,如果授權,就將這個賬號的key傳給其他客戶端
3、客戶端拿到key,進行HMAC運算,並將運算結果的哈希值傳給伺服器
但是在這之中有一個潛在的安全隱患問題: 當別人拿到賬號和傳遞的哈希值過後,也就能拿到登錄許可權,從而不安全。
為了防止上面的問題,注冊流程不變,伺服器還是保存的有加了key的HMAC哈希值。
1、只是登錄的時候,客戶端將哈希值與時間戳拼接過後,進行MD5加密,再傳給伺服器。
2、伺服器將注冊保存的賬號對應的HMAC哈希值,分別與當前時間,和前一分鍾拼接再MD5加密,再和客戶端傳過來的進行匹配,匹配成功則登錄成功,否則不成功。
3、注意這里的時間戳是伺服器給的時間戳。
常見的加密演算法:
應用模式:
AES加密解密都是用到的CCCrypt函數,並且需要導入 CommonCrypto 框架。
㈨ 如何使用java進行sha1加密
簡單的做法是
1、使用apache的codec jar包對string進行加密,先下載並引入jar包:http://commons.apache.org/proper/commons-codec/
2、生成:
String sign = DigestUtils.shaHex(str);
3.也可以使用工具在線進行sha加密,參考 hash值(md5, sha1, sha256, sha512,crc32) 在線計算,http://www.it399.com/m/FileHash。望採納,謝謝。
㈩ hash在線解密
*nix系系統:
ES(Unix)
例子: IvS7aeT4NzQPM
說明:linux或者其他linux內核系統中
長度: 13 個字元
描述喊基枯:第1、2位為salt,例子中的'Iv'位salt,後面的為hash值
系統:MD5(Unix)
例子:$1$12345678$XM4P3PrKBgKNnTaqG9P0T/
說明:Linux或者其他linux內核系統中
長度:34個字元
描述:開始的$1$位為加密標志,後面8位12345678為加密使用的salt,後面的為hash
加密演算法:2000次循環調用MD5加密
系統:SHA-512(Unix)
例子:$6$12345678$U6Yv5E1lWn6mEESzKen42o6rbEm
說明:Linux或者其他linux內核系統中
長度: 13 個字元
描述:開始的$6$位為加密標志,後面8位為salt,後面的為hash
加密演算法:5000次的SHA-512加密
系統:SHA-256(Unix)
例子:$5$12345678$jBWLgeYZbSvREnuBr5s3gp13vqi
說明:Linux或者其他linux內核系統中
長度: 55 個字元
描述:開始的$5$位為加密標志,後面8位為salt,後面的為hash
加密演算法:5000次的SHA-256加密
系鄭洞統:MD5(APR)
例子:$apr1$12345678$auQSX8Mvzt.tdBi4y6Xgj.
說明:Linux或者其他linux內核系統中
長度:37個字元
描述:開始的$apr1$位為加密標志,後面8位為salt,後面的為hash
加密演算法:2000次循環調用MD5加密
windows系統:
windows
例子:Admin:
長度:98個字元
加密演算法:MD4(MD4(Unicode($pass)).Unicode(strtolower($username)))
mysql
系統:mysql
例子:606717496665bcba
說明:老版本的MySql中
長度:8位元組(16個字元)
說明:包括兩個位元組,且每個字的值不超過0x7fffffff
系統:MySQL5
例子:*
說明:較新版本的MySQL
長度:20位元組(40位)
加密演算法:SHA-1(SHA-1($pass))
其他系統:
系統:MD5(WordPress)
例子:$P$
說明:WordPress使用的md5
長度:34個字元
描述:$P$表示加密類型,然後跟著一位字元,經常是字元『B』,後面是8位salt,後面是就是hash
加密演算法:8192次md5循環加密
系統:MD5(phpBB3)
說明:phpBB 3.x.x.使用
例子:$H$9123456785DAERgALpsri.D9z3ht120
長度:34個字元
描述:開始的$H$為加密標志,後面跟著一個字元,一般的都是字元『9』,然後是8位salt,然後是hash 值
加密演算法:2048次循環調用MD5加密
系統:RAdmin v2.x
說明:Remote Administrator v2.x版本中
例子:
長度:16位元組(32個字元)
加密演算法:字元用0填充到100位元組後,將填充過後的字元經過md5加密得到(32位值)
md5加密
標准MD5
例子:
使用范圍:phpBB v2.x, Joomla 的 1.0.13版本前,及其他cmd
長度:16個字元
其他的加salt及變形類似:
md5($salt.$pass)
例子::12
md5(md5($pass))
例子:
md5(md5($pass).$salt)
例子::wQ6
md5(md5($salt).md5($pass))
例子: :wH6_S
md5(md5($salt).$pass)
例子鋒譽: :1234