python中的reshape
A. python如何減小維度
ravel():將多維數組拉平(一維)。
flatten():將多維數組拉平,並拷貝一份。
squeeze():除去多維數組中,維數為1的維度,如315降維後3*5。
reshape(-1):多維數組,拉平。
reshape(-1,5):其中-1表示我們不用親自去指定這一維度的大小,理解為n維。
python學習網,大量的免費python視頻教程,歡迎在線學習!
B. python resize和reshape的區別
0. reshape的參數
reshape的參數嚴格地說,應該是tuple類型(tuple of ints),似乎不是tuple也成(ints)。
>>> x = np.random.rand(2, 3)
>>> x.reshape((3, 2))
# 以tuple of ints
array([[ 0.19399632, 0.33569667],
[ 0.36343308, 0.7068406 ],
[ 0.89809989, 0.7316493 ]])
>>> x.reshape(3, 2)
array([[ 0.19399632, 0.33569667],
[ 0.36343308, 0.7068406 ],
[ 0.89809989, 0.7316493 ]])
1. .reshape 實現維度的提升
(3, ) (3, 1):前者表示一維數組(無行和列的概念),後者則表示一個特殊的二維數組,也即是一個列向量;
>> x = np.ones(3)
>> x
array([ 1., 1., 1.])
>> x.reshape(3, 1)
array([[ 1.],
[ 1.],
[ 1.]])
>> x.reshape(1, 3)
array([[ 1., 1., 1.]])
2. .reshape 與 .resize
reshape:有返回值,所謂有返回值,即不對原始多維數組進行修改;
resize:無返回值,所謂有返回值,即會對原始多維數組進行修改;
>> X = np.random.randn(2, 3)
>> X
array([[ 1.23077478, -0.70550605, -0.37017735],
[-0.61543319, 1.1188644 , -1.05797142]])
>> X.reshape((3, 2))
array([[ 1.23077478, -0.70550605],
[-0.37017735, -0.61543319],
[ 1.1188644 , -1.05797142]])
>> X
array([[ 1.23077478, -0.70550605, -0.37017735],
[-0.61543319, 1.1188644 , -1.05797142]])
>> X.resize((3, 2))
>> X
array([[ 1.23077478, -0.70550605],
[-0.37017735, -0.61543319],
[ 1.1188644 , -1.05797142]])
C. python reshape 輸出自動換行求解決方法
print函數應該有個默認的輸出長度,超出長度都自動換行,不信你把1000改為100,10X15也不會換行。
D. python中怎麼將一個數據集中的每條數據轉換成相應的矩陣
python的一個很重要的包是numpy包,這個包可以很方便的做數據科學計算。numpy中有很多方法,array,matrix,對於數據集的每一條數據,可以通過matrix函數來將其轉換為矩陣形式,並且還有reshape方法,可以調整矩陣的行和列。
E. python reshape函數和opencv reshape 函數一樣嗎
main() { 通常是程序框架; (無非是初始化opengl,創建窗口 io處理等等) } 裡面有個reshape,這是個函數指針,你也可以把命名為其他的名字。 當窗口大小變化時,為了防止物體變形,這時要重設投影轉換矩陣,設置視口轉換矩陣
F. python處理圖片數據
目錄
1.機器是如何存儲圖像的?
2.在Python中讀取圖像數據
3.從圖像數據中提取特徵的方法#1:灰度像素值特徵
4.從圖像數據中提取特徵的方法#2:通道的平均像素值
5.從圖像數據中提取特徵的方法#3:提取邊緣
是一張數字8的圖像,仔細觀察就會發現,圖像是由小方格組成的。這些小方格被稱為像素。
但是要注意,人們是以視覺的形式觀察圖像的,可以輕松區分邊緣和顏色,從而識別圖片中的內容。然而機器很難做到這一點,它們以數字的形式存儲圖像。請看下圖:
機器以數字矩陣的形式儲存圖像,矩陣大小取決於任意給定圖像的像素數。
假設圖像的尺寸為180 x 200或n x m,這些尺寸基本上是圖像中的像素數(高x寬)。
這些數字或像素值表示像素的強度或亮度,較小的數字(接近0)表示黑色,較大的數字(接近255)表示白色。通過分析下面的圖像,讀者就會弄懂到目前為止所學到的知識。
下圖的尺寸為22 x 16,讀者可以通過計算像素數來驗證:
圖片源於機器學習應用課程
剛才討論的例子是黑白圖像,如果是生活中更為普遍的彩色呢?你是否認為彩色圖像也以2D矩陣的形式存儲?
彩色圖像通常由多種顏色組成,幾乎所有顏色都可以從三原色(紅色,綠色和藍色)生成。
因此,如果是彩色圖像,則要用到三個矩陣(或通道)——紅、綠、藍。每個矩陣值介於0到255之間,表示該像素的顏色強度。觀察下圖來理解這個概念:
圖片源於機器學習應用課程
左邊有一幅彩色圖像(人類可以看到),而在右邊,紅綠藍三個顏色通道對應三個矩陣,疊加三個通道以形成彩色圖像。
請注意,由於原始矩陣非常大且可視化難度較高,因此這些不是給定圖像的原始像素值。此外,還可以用各種其他的格式來存儲圖像,RGB是最受歡迎的,所以筆者放到這里。讀者可以在此處閱讀更多關於其他流行格式的信息。
用Python讀取圖像數據
下面開始將理論知識付諸實踐。啟動Python並載入圖像以觀察矩陣:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩陣有784個值,而且這只是整個矩陣的一小部分。用一個LIVE編碼窗口,不用離開本文就可以運行上述所有代碼並查看結果。
下面來深入探討本文背後的核心思想,並探索使用像素值作為特徵的各種方法。
方法#1:灰度像素值特徵
從圖像創建特徵最簡單的方法就是將原始的像素用作單獨的特徵。
考慮相同的示例,就是上面那張圖(數字『8』),圖像尺寸為28×28。
能猜出這張圖片的特徵數量嗎?答案是與像素數相同!也就是有784個。
那麼問題來了,如何安排這784個像素作為特徵呢?這樣,可以簡單地依次追加每個像素值從而生成特徵向量。如下圖所示:
下面來用Python繪制圖像,並為該圖像創建這些特徵:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
該圖像尺寸為650×450,因此特徵數量應為297,000。可以使用NumPy中的reshape函數生成,在其中指定圖像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
這里就得到了特徵——長度為297,000的一維數組。很簡單吧?在實時編碼窗口中嘗試使用此方法提取特徵。
但結果只有一個通道或灰度圖像,對於彩色圖像是否也可以這樣呢?來看看吧!
方法#2:通道的平均像素值
在讀取上一節中的圖像時,設置了參數『as_gray = True』,因此在圖像中只有一個通道,可以輕松附加像素值。下面刪除參數並再次載入圖像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
這次,圖像尺寸為(660,450,3),其中3為通道數量。可以像之前一樣繼續創建特徵,此時特徵數量將是660*450*3 = 891,000。
或者,可以使用另一種方法:
生成一個新矩陣,這個矩陣具有來自三個通道的像素平均值,而不是分別使用三個通道中的像素值。
下圖可以讓讀者更清楚地了解這一思路:
這樣一來,特徵數量保持不變,並且還能考慮來自圖像全部三個通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
現有一個尺寸為(660×450×3)的三維矩陣,其中660為高度,450為寬度,3是通道數。為獲取平均像素值,要使用for循環:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩陣具有相同的高度和寬度,但只有一個通道。現在,可以按照與上一節相同的步驟進行操作。依次附加像素值以獲得一維數組:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取邊緣特徵
請思考,在下圖中,如何識別其中存在的對象:
識別出圖中的對象很容易——狗、汽車、還有貓,那麼在區分的時候要考慮哪些特徵呢?形狀是一個重要因素,其次是顏色,或者大小。如果機器也能像這樣識別形狀會怎麼樣?
類似的想法是提取邊緣作為特徵並將其作為模型的輸入。稍微考慮一下,要如何識別圖像中的邊緣呢?邊緣一般都是顏色急劇變化的地方,請看下圖:
筆者在這里突出了兩個邊緣。這兩處邊緣之所以可以被識別是因為在圖中,可以分別看到顏色從白色變為棕色,或者由棕色變為黑色。如你所知,圖像以數字的形式表示,因此就要尋找哪些像素值發生了劇烈變化。
假設圖像矩陣如下:
圖片源於機器學習應用課程
該像素兩側的像素值差異很大,於是可以得出結論,該像素處存在顯著的轉變,因此其為邊緣。現在問題又來了,是否一定要手動執行此步驟?
當然不!有各種可用於突出顯示圖像邊緣的內核,剛才討論的方法也可以使用Prewitt內核(在x方向上)來實現。以下是Prewitt內核:
獲取所選像素周圍的值,並將其與所選內核(Prewitt內核)相乘,然後可以添加結果值以獲得最終值。由於±1已經分別存在於兩列之中,因此添加這些值就相當於獲取差異。
還有其他各種內核,下面是四種最常用的內核:
圖片源於機器學習應用課程
現在回到筆記本,為同一圖像生成邊緣特徵:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
G. python list 可以reshape 嗎
不行,list類沒有此方法。
H. python 裡面reshap(-1,1024)中的-1什麼意思
為-1,表示此時該元素值表示為指定,會從數組的長度和剩餘的維度中推斷出;
如1:
>>> a=np.array([1,2,3,4,5])
>>> d=a.reshape((-1,1)) #指定的值被推斷出為5
>>> d
輸出:array([[1],
[2],
[3],
[4],
[5]])
如2:
>>> b=np.array([[1,2,3],[4,5,6]])
>>> d=b.reshape(3,-1) #指定的值被推斷出為2
>>> d
輸出:array([[1, 2],
[3, 4],
[5, 6]])
I. python行轉換成列怎麼實現
可以使用Python字元串內置的替換方法把分隔符「,」替換成『 』 換行符即可(Linux、MacOS下換行符為:" "):
iPython下演示