pcapython代碼
Ⅰ python如何實現pca分析
[coef,SCORE,latent] = princomp(A);
latentsum = sum(latent);
for i = 1:col%A的總列數
if sum(latent(1:i))/latentsum > threshold%閾值 eg:0.95
tranM = coef(:,1:i);
break;
end
end
B = A* tranM;
Ⅱ 關於Python的問題
你嘗試在return float(x) 前面加print(x)看看輸出的是什麼
Ⅲ python pca 特徵值怎麼求
主要是用來降低數據集的維度,然後挑選出主要的特徵。
原理簡單,實現也簡單。關於原理公式的推導,本文不會涉及,可以參考文獻,也可以去Wikipedia,這里主要關注實現,算是鍛煉一下自己。
Ⅳ python pca降維 自變數與因變數怎麼關聯
這里的定義略有混亂,與模式相關的學科定義的特徵向量和數學裡面定義的特徵向量採取了同一個英文單詞,在翻譯過來以後也都翻譯成了特徵向量。數據挖掘技術恰好兩個特徵向量都用到了,所以很容易混淆。 如果你指得是數學裡面的特徵向量,
Ⅳ python怎麼學習
對於很多想學習Python的小夥伴來說,不知道從何開始,小蝸這里整理了一份Python全棧開發的學習路線,大家可按照以下這份大綱來進行學習:
第一階段:專業核心基礎
階段目標:
1. 熟練掌握Python的開發環境與編程核心知識
2. 熟練運用Python面向對象知識進行程序開發
3. 對Python的核心庫和組件有深入理解
4. 熟練應用SQL語句進行資料庫常用操作
5. 熟練運用Linux操作系統命令及環境配置
6. 熟練使用MySQL,掌握資料庫高級操作
7. 能綜合運用所學知識完成項目
知識點:
Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。
1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。
2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。
3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。
4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。
5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。
第二階段:PythonWEB開發
階段目標:
1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系統中的前後端交互過程與通信協議
3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發
4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識
5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理
6. 使用Web開發框架實現貫穿項目
知識點:
Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。
1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。
2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。
3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。
4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。
第三階段:爬蟲與數據分析
階段目標:
1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析
2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取
3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理
4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取
5. 熟練掌握數據分析相關概念及工作流程
6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用
7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫
8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰
知識點:
網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。
1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。
2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。
3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。
4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。
第四階段:機器學習與人工智慧
階段目標:
1. 理解機器學習相關的基本概念及系統處理流程
2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題
3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等
4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等
5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目
知識點:
1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。
2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。
Ⅵ 如何在js上運行Python腳本或者,js怎麼調用.py文件
想調用後台按鈕的事件,不用AJAX,可以使用一種變通的方法。 比如你一個前台HTML控制項 ID=ctl吧,在這里控制項的onclick事件中綁定下面的函數.同時假定已存在一個ID=btnTest的伺服器控制項(該控制項有後台Click事件) <input id='ctl' type='button' onclick='callOtherBtnEvent();' /> function callOtherBtnEvent(){ document.getElementById('<%btnTest.ClientID%>').click(); } 後台public void btnTest_Click(object sender,EventArgs e) { Response.Write("<script>alert('調用了後台事件')</script>"); }
Ⅶ python pca怎麼得到主成份
一般步驟來實現PCA演算法
(1)零均值化
假如原始數據集為矩陣dataMat,dataMat中每一行代表一個樣本,每一列代表同一個特徵。零均值化就是求每一列的平均值,然後該列上的所有數都減去這個均值。也就是說,這里零均值化是對每一個特徵而言的,零均值化都,每個特徵的均值變成0。實現代碼如下:
[python]view plain
defzeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0)#按列求均值,即求各個特徵的均值
newData=dataMat-meanVal
returnnewData,meanVal
newData,meanVal=zeroMean(dataMat)
covMat=np.cov(newData,rowvar=0)
eigVals,eigVects=np.linalg.eig(np.mat(covMat))
eigValIndice=np.argsort(eigVals)#對特徵值從小到大排序
n_eigValIndice=eigValIndice[-1:-(n+1):-1]#最大的n個特徵值的下標
n_eigVect=eigVects[:,n_eigValIndice]#最大的n個特徵值對應的特徵向量
lowDDataMat=newData*n_eigVect#低維特徵空間的數據
reconMat=(lowDDataMat*n_eigVect.T)+meanVal#重構數據
returnlowDDataMat,reconMat
函數中用numpy中的mean方法來求均值,axis=0表示按列求均值。
該函數返回兩個變數,newData是零均值化後的數據,meanVal是每個特徵的均值,是給後面重構數據用的。
(2)求協方差矩陣
[python]view plain
numpy中的cov函數用於求協方差矩陣,參數rowvar很重要!若rowvar=0,說明傳入的數據一行代表一個樣本,若非0,說明傳入的數據一列代表一個樣本。因為newData每一行代表一個樣本,所以將rowvar設置為0。
covMat即所求的協方差矩陣。
(3)求特徵值、特徵矩陣
調用numpy中的線性代數模塊linalg中的eig函數,可以直接由covMat求得特徵值和特徵向量:
[python]view plain
eigVals存放特徵值,行向量。
eigVects存放特徵向量,每一列帶別一個特徵向量。
特徵值和特徵向量是一一對應的
(4)保留主要的成分[即保留值比較大的前n個特徵]
第三步得到了特徵值向量eigVals,假設裡面有m個特徵值,我們可以對其排序,排在前面的n個特徵值所對應的特徵向量就是我們要保留的,它們組成了新的特徵空間的一組基n_eigVect。將零均值化後的數據乘以n_eigVect就可以得到降維後的數據。代碼如下:
[python]view plain
代碼中有幾點要說明一下,首先argsort對特徵值是從小到大排序的,那麼最大的n個特徵值就排在後面,所以eigValIndice[-1:-(n+1):-1]就取出這個n個特徵值對應的下標。【python裡面,list[a:b:c]代表從下標a開始到b,步長為c。】
Ⅷ 如何用python實現pca降維
首先2個包:
importnumpyasnp
fromsklearn.decompositionimportPCA
然後一個m x n 的矩陣,n為維度,這里設為x。
n_components = 12 是自己可以設的。
pca=PCA(n_components=12)
pca.fit(x)
PCA(=True,iterated_power='auto',n_components=12,random_state=None,
svd_solver='auto',tol=0.0,whiten=False)
float_formatter=lambdax:"%.2f"%x
np.set_printoptions(formatter={'float_kind':float_formatter})
print'explainedvarianceratio:'
printpca.explained_variance_ratio_
print'cumulativesum:'
printpca.explained_variance_ratio_.cumsum()
Ⅸ 如何用Python和機器學習炒股賺錢
相信很多人都想過讓人工智慧來幫你賺錢,但到底該如何做呢?瑞士日內瓦的一位金融數據顧問 Gaëtan Rickter 近日發表文章介紹了他利用 Python 和機器學習來幫助炒股的經驗,其最終成果的收益率跑贏了長期處於牛市的標准普爾 500 指數。雖然這篇文章並沒有將他的方法完全徹底公開,但已公開的內容或許能給我們帶來如何用人工智慧炒股的啟迪。
我終於跑贏了標准普爾 500 指數 10 個百分點!聽起來可能不是很多,但是當我們處理的是大量流動性很高的資本時,對沖基金的利潤就相當可觀。更激進的做法還能得到更高的回報。
這一切都始於我閱讀了 Gur Huberman 的一篇題為《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的論文。該研究描述了一件發生在 1998 年的涉及到一家上市公司 EntreMed(當時股票代碼是 ENMD)的事件:
「星期天《紐約時報》上發表的一篇關於癌症治療新葯開發潛力的文章導致 EntreMed 的股價從周五收盤時的 12.063 飆升至 85,在周一收盤時接近 52。在接下來的三周,它的收盤價都在 30 以上。這股投資熱情也讓其它生物科技股得到了溢價。但是,這個癌症研究方面的可能突破在至少五個月前就已經被 Nature 期刊和各種流行的報紙報道過了,其中甚至包括《泰晤士報》!因此,僅僅是熱情的公眾關注就能引發股價的持續上漲,即便實際上並沒有出現真正的新信息。」
在研究者給出的許多有見地的觀察中,其中有一個總結很突出:
「(股價)運動可能會集中於有一些共同之處的股票上,但這些共同之處不一定要是經濟基礎。」
我就想,能不能基於通常所用的指標之外的其它指標來劃分股票。我開始在資料庫裡面挖掘,幾周之後我發現了一個,其包含了一個分數,描述了股票和元素周期表中的元素之間的「已知和隱藏關系」的強度。
我有計算基因組學的背景,這讓我想起了基因和它們的細胞信號網路之間的關系是如何地不為人所知。但是,當我們分析數據時,我們又會開始看到我們之前可能無法預測的新關系和相關性。
如果你使用機器學習,就可能在具有已知和隱藏關系的上市公司的寄生、共生和共情關系之上搶佔先機,這是很有趣而且可以盈利的。最後,一個人的盈利能力似乎完全關乎他在生成這些類別的數據時想出特徵標簽(即概念(concept))的強大組合的能力。
我在這類模型上的下一次迭代應該會包含一個用於自動生成特徵組合或獨特列表的單獨演算法。也許會基於近乎實時的事件,這可能會影響那些具有隻有配備了無監督學習演算法的人類才能預測的隱藏關系的股票組。