當前位置:首頁 » 編程語言 » python爬蟲詳解

python爬蟲詳解

發布時間: 2022-05-20 19:10:06

① 如何用python寫出爬蟲

先檢查是否有API

API是網站官方提供的數據介面,如果通過調用API採集數據,則相當於在網站允許的范圍內採集,這樣既不會有道德法律風險,也沒有網站故意設置的障礙;不過調用API介面的訪問則處於網站的控制中,網站可以用來收費,可以用來限制訪問上限等。整體來看,如果數據採集的需求並不是很獨特,那麼有API則應優先採用調用API的方式。

數據結構分析和數據存儲

爬蟲需求要十分清晰,具體表現為需要哪些欄位,這些欄位可以是網頁上現有的,也可以是根據網頁上現有的欄位進一步計算的,這些欄位如何構建表,多張表如何連接等。值得一提的是,確定欄位環節,不要只看少量的網頁,因為單個網頁可以缺少別的同類網頁的欄位,這既有可能是由於網站的問題,也可能是用戶行為的差異,只有多觀察一些網頁才能綜合抽象出具有普適性的關鍵欄位——這並不是幾分鍾看幾個網頁就可以決定的簡單事情,如果遇上了那種臃腫、混亂的網站,可能坑非常多。

對於大規模爬蟲,除了本身要採集的數據外,其他重要的中間數據(比如頁面Id或者url)也建議存儲下來,這樣可以不必每次重新爬取id。

資料庫並沒有固定的選擇,本質仍是將Python里的數據寫到庫里,可以選擇關系型資料庫Mysql等,也可以選擇非關系型資料庫MongoDB等;對於普通的結構化數據一般存在關系型資料庫即可。sqlalchemy是一個成熟好用的資料庫連接框架,其引擎可與Pandas配套使用,把數據處理和數據存儲連接起來,一氣呵成。

數據流分析

對於要批量爬取的網頁,往上一層,看它的入口在哪裡;這個是根據採集范圍來確定入口,比如若只想爬一個地區的數據,那從該地區的主頁切入即可;但若想爬全國數據,則應更往上一層,從全國的入口切入。一般的網站網頁都以樹狀結構為主,找到切入點作為根節點一層層往裡進入即可。

值得注意的一點是,一般網站都不會直接把全量的數據做成列表給你一頁頁往下翻直到遍歷完數據,比如鏈家上面很清楚地寫著有24587套二手房,但是它只給100頁,每頁30個,如果直接這么切入只能訪問3000個,遠遠低於真實數據量;因此先切片,再整合的數據思維可以獲得更大的數據量。顯然100頁是系統設定,只要超過300個就只顯示100頁,因此可以通過其他的篩選條件不斷細分,只到篩選結果小於等於300頁就表示該條件下沒有缺漏;最後把各種條件下的篩選結果集合在一起,就能夠盡可能地還原真實數據量。

明確了大規模爬蟲的數據流動機制,下一步就是針對單個網頁進行解析,然後把這個模式復制到整體。對於單個網頁,採用抓包工具可以查看它的請求方式,是get還是post,有沒有提交表單,欲採集的數據是寫入源代碼里還是通過AJAX調用JSON數據。

同樣的道理,不能只看一個頁面,要觀察多個頁面,因為批量爬蟲要弄清這些大量頁面url以及參數的規律,以便可以自動構造;有的網站的url以及關鍵參數是加密的,這樣就悲劇了,不能靠著明顯的邏輯直接構造,這種情況下要批量爬蟲,要麼找到它加密的js代碼,在爬蟲代碼上加入從明文到密碼的加密過程;要麼採用下文所述的模擬瀏覽器的方式。

數據採集

之前用R做爬蟲,不要笑,R的確可以做爬蟲工作;但在爬蟲方面,Python顯然優勢更明顯,受眾更廣,這得益於其成熟的爬蟲框架,以及其他的在計算機系統上更好的性能。scrapy是一個成熟的爬蟲框架,直接往裡套用就好,比較適合新手學習;requests是一個比原生的urllib包更簡潔強大的包,適合作定製化的爬蟲功能。requests主要提供一個基本訪問功能,把網頁的源代碼給download下來。一般而言,只要加上跟瀏覽器同樣的Requests Headers參數,就可以正常訪問,status_code為200,並成功得到網頁源代碼;但是也有某些反爬蟲較為嚴格的網站,這么直接訪問會被禁止;或者說status為200也不會返回正常的網頁源碼,而是要求寫驗證碼的js腳本等。

下載到了源碼之後,如果數據就在源碼中,這種情況是最簡單的,這就表示已經成功獲取到了數據,剩下的無非就是數據提取、清洗、入庫。但若網頁上有,然而源代碼里沒有的,就表示數據寫在其他地方,一般而言是通過AJAX非同步載入JSON數據,從XHR中找即可找到;如果這樣還找不到,那就需要去解析js腳本了。

解析工具

源碼下載後,就是解析數據了,常用的有兩種方法,一種是用BeautifulSoup對樹狀HTML進行解析,另一種是通過正則表達式從文本中抽取數據。

BeautifulSoup比較簡單,支持Xpath和CSSSelector兩種途徑,而且像Chrome這類瀏覽器一般都已經把各個結點的Xpath或者CSSSelector標記好了,直接復制即可。以CSSSelector為例,可以選擇tag、id、class等多種方式進行定位選擇,如果有id建議選id,因為根據HTML語法,一個id只能綁定一個標簽。

正則表達式很強大,但構造起來有點復雜,需要專門去學習。因為下載下來的源碼格式就是字元串,所以正則表達式可以大顯身手,而且處理速度很快。

對於HTML結構固定,即同樣的欄位處tag、id和class名稱都相同,採用BeautifulSoup解析是一種簡單高效的方案,但有的網站混亂,同樣的數據在不同頁面間HTML結構不同,這種情況下BeautifulSoup就不太好使;如果數據本身格式固定,則用正則表達式更方便。比如以下的例子,這兩個都是深圳地區某個地方的經度,但一個頁面的class是long,一個頁面的class是longitude,根據class來選擇就沒辦法同時滿足2個,但只要注意到深圳地區的經度都是介於113到114之間的浮點數,就可以通過正則表達式"11[3-4].\d+"來使兩個都滿足。

數據整理

一般而言,爬下來的原始數據都不是清潔的,所以在入庫前要先整理;由於大部分都是字元串,所以主要也就是字元串的處理方式了。

字元串自帶的方法可以滿足大部分簡單的處理需求,比如strip可以去掉首尾不需要的字元或者換行符等,replace可以將指定部分替換成需要的部分,split可以在指定部分分割然後截取一部分。

如果字元串處理的需求太復雜以致常規的字元串處理方法不好解決,那就要請出正則表達式這個大殺器。

Pandas是Python中常用的數據處理模塊,雖然作為一個從R轉過來的人一直覺得這個模仿R的包實在是太難用了。Pandas不僅可以進行向量化處理、篩選、分組、計算,還能夠整合成DataFrame,將採集的數據整合成一張表,呈現最終的存儲效果。

寫入資料庫

如果只是中小規模的爬蟲,可以把最後的爬蟲結果匯合成一張表,最後導出成一張表格以便後續使用;但對於表數量多、單張表容量大的大規模爬蟲,再導出成一堆零散的表就不合適了,肯定還是要放在資料庫中,既方便存儲,也方便進一步整理。

寫入資料庫有兩種方法,一種是通過Pandas的DataFrame自帶的to_sql方法,好處是自動建表,對於對表結構沒有嚴格要求的情況下可以採用這種方式,不過值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否則報錯,雖然這個認為不太合理;另一種是利用資料庫引擎來執行SQL語句,這種情況下要先自己建表,雖然多了一步,但是表結構完全是自己控制之下。Pandas與SQL都可以用來建表、整理數據,結合起來使用效率更高。

② Python爬蟲基本知識:什麼是爬蟲

世界上80%的爬蟲是基於Python開發的,學好爬蟲技能,可為後續的大數據分析、挖掘、機器學習等提供重要的數據源。
什麼是爬蟲?
網路爬蟲(又被稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲。
其實通俗的講就是通過程序去獲取web頁面上自己想要的數據,也就是自動抓取數據
爬蟲可以做什麼?
你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。

③ Python爬蟲程序要用到哪些知識和技術

1.對網頁結構需要有一個基本的了解和認知。
我們平時上網瀏覽網頁,信息展現在瀏覽器裡面的頁面中,但我們用爬蟲要抓取的信息是放在網頁源代碼裡面的。(圖1為我們看到的頁面,圖2
為頁面對應的網頁源代碼)
在瀏覽器中使用快捷鍵F12來調出該界面,這個界面稱為開發者模式
2.知道如何去找到我們需要的信息在網頁源代碼的那個位置。
一般來說信息可能直接存在於網頁的html頁面中,但是有一些動態載入的信息可能存在於js頁面中。有一些網站,它的數據價值比較高,總會有競爭對手去抓取它的數據,所以它就會有比較厲害的反抓取措施,一般新手很難應付這種反抓取措施。一般的靜態網頁要求你對瀏覽器的開發者模式很熟悉,能夠利用這個工具去定位自己需要的信息在網頁源代碼中的那個位置,網上有相關教程,搜一下就能找到,更復雜的動態網頁,就需要你對動態載入的網頁有點研究才行。這些知識點和技能,都是需要自己動手去嘗試才能學會的。
3.知道用什麼python程序庫去完成網頁源代碼的下載,解析,數據提取,存儲。
python是一門很簡單的編程語言,一方面是因為python的語法簡潔,另一方面是因為在python社區,已經有很多很多的人為我們貢獻了很多很多開源的程序庫,我們在編寫程序的時候,直接調用這些程序庫,就能夠省下很多很多工作量。

④ python網路爬蟲怎麼學習

現行環境下,大數據與人工智慧的重要依託還是龐大的數據和分析採集,類似於淘寶 京東 網路 騰訊級別的企業 能夠通過數據可觀的用戶群體獲取需要的數據,而一般企業可能就沒有這種通過產品獲取數據的能力和條件,想從事這方面的工作,需掌握以下知識:
1. 學習Python基礎知識並實現基本的爬蟲過程
一般獲取數據的過程都是按照 發送請求-獲得頁面反饋-解析並且存儲數據 這三個流程來實現的。這個過程其實就是模擬了一個人工瀏覽網頁的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,我們可以按照requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
2.了解非結構化數據的存儲
爬蟲抓取的數據結構復雜 傳統的結構化資料庫可能並不是特別適合我們使用。我們前期推薦使用MongoDB 就可以。
3. 掌握一些常用的反爬蟲技巧
使用代理IP池、抓包、驗證碼的OCR處理等處理方式即可以解決大部分網站的反爬蟲策略。
4.了解分布式存儲
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具就可以了。

⑤ Python爬蟲是什麼

爬蟲一般是指網路資源的抓取,由於Python的腳本特性,易於配置對字元的處理非常靈活,Python有豐富的網路抓取模塊,因此兩者經常聯系在一起Python就被叫作爬蟲。

Python爬蟲的構架組成:

⑥ python爬蟲的工作步驟

當前處於一個大數據的時代,一般網站數據來源有二:網站用戶自身產生的數據和網站從其他來源獲取的數據,今天要分享的是如何從其他網站獲取你想要的數據。

目前最適合用於寫爬蟲的語言是python,python中最受歡迎的爬蟲框架是scrapy,本文圍繞scrapy來展開講解爬蟲是怎麼工作的。

1.如下圖所示,爬蟲從編寫的spider文件中的start_urls開始,這個列表中的url就是爬蟲抓取的第一個網頁,它的返回值是該url對應網頁的源代碼,我們可以用默認的parse(self,response)函數去列印或解析這個源代碼

2.我們獲取到源代碼之後,就可以從網頁源代碼中找到我們想要的信息或需要進一步訪問的url,提取信息這一步,scrapy中集成了xpath,正則(re),功能十分強大,提取到信息之後會通過yield進入到中間件當中。

中間件包括爬蟲中間件和下載中間件,爬蟲中間件主要用於設置處理爬蟲文件中的代碼塊,下載中間件主要用於判斷爬蟲進入網頁前後的爬取狀態,在此中間件中,你可以根據爬蟲的返回狀態去做進一步判斷。

最後我們將yield過來的item,即就是我們想要的數據會在pipeline.py文件中進行處理,存入資料庫,寫入本地文件,都可以在這里進行,另外,為了減少代碼冗餘,建議所有與設置參數有關的參數,都寫在settings.py中去

⑦ Python之爬蟲框架概述

丨綜述

爬蟲入門之後,我們有兩條路可以走。

一個是繼續深入學習,以及關於設計模式的一些知識,強化Python相關知識,自己動手造輪子,繼續為自己的爬蟲增加分布式,多線程等功能擴展。另一條路便是學習一些優秀的框架,先把這些框架用熟,可以確保能夠應付一些基本的爬蟲任務,也就是所謂的解決溫飽問題,然後再深入學習它的源碼等知識,進一步強化。

就個人而言,前一種方法其實就是自己動手造輪子,前人其實已經有了一些比較好的框架,可以直接拿來用,但是為了自己能夠研究得更加深入和對爬蟲有更全面的了解,自己動手去多做。後一種方法就是直接拿來前人已經寫好的比較優秀的框架,拿來用好,首先確保可以完成你想要完成的任務,然後自己再深入研究學習。第一種而言,自己探索的多,對爬蟲的知識掌握會比較透徹。第二種,拿別人的來用,自己方便了,可是可能就會沒有了深入研究框架的心情,還有可能思路被束縛。

不過個人而言,我自己偏向後者。造輪子是不錯,但是就算你造輪子,你這不也是在基礎類庫上造輪子么?能拿來用的就拿來用,學了框架的作用是確保自己可以滿足一些爬蟲需求,這是最基本的溫飽問題。倘若你一直在造輪子,到最後都沒造出什麼來,別人找你寫個爬蟲研究了這么長時間了都寫不出來,豈不是有點得不償失?所以,進階爬蟲我還是建議學習一下框架,作為自己的幾把武器。至少,我們可以做到了,就像你拿了把槍上戰場了,至少,你是可以打擊敵人的,比你一直在磨刀好的多吧?

丨框架概述

博主接觸了幾個爬蟲框架,其中比較好用的是 Scrapy 和PySpider。就個人而言,pyspider上手更簡單,操作更加簡便,因為它增加了 WEB 界面,寫爬蟲迅速,集成了phantomjs,可以用來抓取js渲染的頁面。Scrapy自定義程度高,比 PySpider更底層一些,適合學習研究,需要學習的相關知識多,不過自己拿來研究分布式和多線程等等是非常合適的。

在這里博主會一一把自己的學習經驗寫出來與大家分享,希望大家可以喜歡,也希望可以給大家一些幫助。

丨PySpider

PySpider是binux做的一個爬蟲架構的開源化實現。主要的功能需求是:

· 抓取、更新調度多站點的特定的頁面
· 需要對頁面進行結構化信息提取
· 靈活可擴展,穩定可監控
而這也是絕大多數python爬蟲的需求 —— 定向抓取,結構化化解析。但是面對結構迥異的各種網站,單一的抓取模式並不一定能滿足,靈活的抓取控制是必須的。為了達到這個目的,單純的配置文件往往不夠靈活,於是,通過腳本去控制抓取是最後的選擇。
而去重調度,隊列,抓取,異常處理,監控等功能作為框架,提供給抓取腳本,並保證靈活性。最後加上web的編輯調試環境,以及web任務監控,即成為了這套框架。

pyspider的設計基礎是:以python腳本驅動的抓取環模型爬蟲

· 通過python腳本進行結構化信息的提取,follow鏈接調度抓取控制,實現最大的靈活性

· 通過web化的腳本編寫、調試環境。web展現調度狀態

· 抓取環模型成熟穩定,模塊間相互獨立,通過消息隊列連接,從單進程到多機分布式靈活拓展
pyspider-arch

pyspider的架構主要分為 scheler(調度器), fetcher(抓取器), processor(腳本執行):

· 各個組件間使用消息隊列連接,除了scheler是單點的,fetcher 和 processor 都是可以多實例分布式部署的。 scheler 負責整體的調度控制。

· 任務由 scheler 發起調度,fetcher 抓取網頁內容, processor 執行預先編寫的python腳本,輸出結果或產生新的提鏈任務(發往 scheler),形成閉環。

· 每個腳本可以靈活使用各種python庫對頁面進行解析,使用框架API控制下一步抓取動作,通過設置回調控制解析動作。

丨Scrapy

Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。

其最初是為了頁面抓取 (更確切來說, 網路抓取 )所設計的, 也可以應用在獲取API所返回的數據(例如 Amazon Associates Web Services ) 或者通用的網路爬蟲。Scrapy用途廣泛,可以用於數據挖掘、監測和自動化測試

Scrapy 使用了 Twisted 非同步網路庫來處理網路通訊。整體架構大致如下

Scrapy主要包括了以下組件:

· 引擎(Scrapy): 用來處理整個系統的數據流處理, 觸發事務(框架核心)

· 調度器(Scheler): 用來接受引擎發過來的請求, 壓入隊列中, 並在引擎再次請求的時候返回. 可以想像成一個URL(抓取網頁的網址或者說是鏈接)的優先隊列, 由它來決定下一個要抓取的網址是什麼, 同時去除重復的網址

· 下載器(Downloader): 用於下載網頁內容, 並將網頁內容返回給蜘蛛(Scrapy下載器是建立在twisted這個高效的非同步模型上的)

· 爬蟲(Spiders): 爬蟲是主要幹活的, 用於從特定的網頁中提取自己需要的信息, 即所謂的實體(Item)。用戶也可以從中提取出鏈接,讓Scrapy繼續抓取下一個頁面

· 項目管道(Pipeline): 負責處理爬蟲從網頁中抽取的實體,主要的功能是持久化實體、驗證實體的有效性、清除不需要的信息。當頁面被爬蟲解析後,將被發送到項目管道,並經過幾個特定的次序處理數據。

· 下載器中間件(Downloader Middlewares): 位於Scrapy引擎和下載器之間的框架,主要是處理Scrapy引擎與下載器之間的請求及響應。

· 爬蟲中間件(Spider Middlewares): 介於Scrapy引擎和爬蟲之間的框架,主要工作是處理蜘蛛的響應輸入和請求輸出。

· 調度中間件(Scheler Middewares): 介於Scrapy引擎和調度之間的中間件,從Scrapy引擎發送到調度的請求和響應。

Scrapy運行流程大概如下:

· 首先,引擎從調度器中取出一個鏈接(URL)用於接下來的抓取

· 引擎把URL封裝成一個請求(Request)傳給下載器,下載器把資源下載下來,並封裝成應答包(Response)

· 然後,爬蟲解析Response

· 若是解析出實體(Item),則交給實體管道進行進一步的處理。

· 若是解析出的是鏈接(URL),則把URL交給Scheler等待抓取。 文 | 崔慶才 來源 | 靜覓

⑧ 如何入門 Python 爬蟲

「入門」是良好的動機,但是可能作用緩慢。如果你手裡或者腦子里有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。

如果你想要入門Python爬蟲,你需要做很多准備。首先是熟悉python編程;其次是了解HTML;

還要了解網路爬蟲的基本原理;最後是學習使用python爬蟲庫。

如果你不懂python,那麼需要先學習python這門非常easy的語言。編程語言基礎語法無非是數據類型、數據結構、運算符、邏輯結構、函數、文件IO、錯誤處理這些,學起來會顯枯燥但並不難。

剛開始入門爬蟲,你甚至不需要去學習python的類、多線程、模塊之類的略難內容。找一個面向初學者的教材或者網路教程,花個十幾天功夫,就能對python基礎有個三四分的認識了。

網路爬蟲的含義:

網路爬蟲,其實也可以叫做網路數據採集更容易理解。就是通過編程向網路伺服器請求數據(HTML表單),然後解析HTML,提取出自己想要的數據。

這會涉及到資料庫、網路伺服器、HTTP協議、HTML、數據科學、網路安全、圖像處理等非常多的內容。但對於初學者而言,並不需要掌握這么多。

⑨ 如何入門 Python 爬蟲

鏈接:https://pan..com/s/1wMgTx-M-Ea9y1IYn-UTZaA

提取碼:2b6c

課程簡介

畢業不知如何就業?工作效率低經常挨罵?很多次想學編程都沒有學會?

Python 實戰:四周實現爬蟲系統,無需編程基礎,二十八天掌握一項謀生技能。

帶你學到如何從網上批量獲得幾十萬數據,如何處理海量大數據,數據可視化及網站製作。

課程目錄

開始之前,魔力手冊 for 實戰學員預習

第一周:學會爬取網頁信息

第二周:學會爬取大規模數據

第三周:數據統計與分析

第四周:搭建 Django 數據可視化網站

......

熱點內容
sql除法運算 發布:2025-02-14 06:30:43 瀏覽:534
如何在家部署一台伺服器 發布:2025-02-14 06:22:04 瀏覽:433
u盤里文件夾是空的 發布:2025-02-14 06:13:22 瀏覽:803
安卓如何縮放圖片尺寸 發布:2025-02-14 06:06:34 瀏覽:116
六年級簡便演算法題 發布:2025-02-14 05:53:02 瀏覽:8
腳本精靈要root嗎 發布:2025-02-14 05:51:30 瀏覽:212
安卓手機如何錄屏怎麼去掉觸摸顯示 發布:2025-02-14 05:36:23 瀏覽:996
安卓系統新品推薦怎麼關 發布:2025-02-14 05:35:44 瀏覽:888
虛擬存儲器的基礎是 發布:2025-02-14 05:32:24 瀏覽:516
androidstudio出錯 發布:2025-02-14 05:32:14 瀏覽:305