c語言堆排序演算法
相關知識介紹(所有定義只為幫助讀者理解相關概念,並非嚴格定義):
1、穩定排序和非穩定排序
簡單地說就是所有相等的數經過某種排序方法後,仍能保持它們在排序之前的相對次序,我們就
說這種排序方法是穩定的。反之,就是非穩定的。
比如:一組數排序前是a1,a2,a3,a4,a5,其中a2=a4,經過某種排序後為a1,a2,a4,a3,a5,
則我們說這種排序是穩定的,因為a2排序前在a4的前面,排序後它還是在a4的前面。假如變成a1,a4,
a2,a3,a5就不是穩定的了。
2、內排序和外排序
在排序過程中,所有需要排序的數都在內存,並在內存中調整它們的存儲順序,稱為內排序;
在排序過程中,只有部分數被調入內存,並藉助內存調整數在外存中的存放順序排序方法稱為外排序。
3、演算法的時間復雜度和空間復雜度
所謂演算法的時間復雜度,是指執行演算法所需要的計算工作量。
一個演算法的空間復雜度,一般是指執行這個演算法所需要的內存空間。
================================================================================
*/
/*
================================================
功能:選擇排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,選出最小的一個數與第一個位置的數交換;
然後在剩下的數當中再找最小的與第二個位置的數交換,如此循環
到倒數第二個數和最後一個數比較為止。
選擇排序是不穩定的。演算法復雜度O(n2)--[n的平方]
=====================================================
*/
void select_sort(int *x, int n)
{
int i, j, min, t;
for (i=0; i<n-1; i++) /*要選擇的次數:0~n-2共n-1次*/
{
min = i; /*假設當前下標為i的數最小,比較後再調整*/
for (j=i+1; j<n; j++)/*循環找出最小的數的下標是哪個*/
{
if (*(x+j) < *(x+min))
{
min = j; /*如果後面的數比前面的小,則記下它的下標*/
}
}
if (min != i) /*如果min在循環中改變了,就需要交換數據*/
{
t = *(x+i);
*(x+i) = *(x+min);
*(x+min) = t;
}
}
}
/*
================================================
功能:直接插入排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,假設前面(n-1) [n>=2] 個數已經是排
好順序的,現在要把第n個數插到前面的有序數中,使得這n個數
也是排好順序的。如此反復循環,直到全部排好順序。
直接插入排序是穩定的。演算法時間復雜度O(n2)--[n的平方]
=====================================================
*/
void insert_sort(int *x, int n)
{
int i, j, t;
for (i=1; i<n; i++) /*要選擇的次數:1~n-1共n-1次*/
{
/*
暫存下標為i的數。注意:下標從1開始,原因就是開始時
第一個數即下標為0的數,前面沒有任何數,單單一個,認為
它是排好順序的。
*/
t=*(x+i);
for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,這里就是下標為i的數,在它前面有序列中找插入位置。*/
{
*(x+j+1) = *(x+j); /*如果滿足條件就往後挪。最壞的情況就是t比下標為0的數都小,它要放在最前面,j==-1,退出循環*/
}
*(x+j+1) = t; /*找到下標為i的數的放置位置*/
}
}
/*
================================================
功能:冒泡排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,對當前還未排好序的范圍內的全部數,自上
而下對相鄰的兩個數依次進行比較和調整,讓較大的數往下沉,較
小的往上冒。即:每當兩相鄰的數比較後發現它們的排序與排序要
求相反時,就將它們互換。
下面是一種改進的冒泡演算法,它記錄了每一遍掃描後最後下沉數的
位置k,這樣可以減少外層循環掃描的次數。
冒泡排序是穩定的。演算法時間復雜度O(n2)--[n的平方]
=====================================================
*/
void bubble_sort(int *x, int n)
{
int j, k, h, t;
for (h=n-1; h>0; h=k) /*循環到沒有比較范圍*/
{
for (j=0, k=0; j<h; j++) /*每次預置k=0,循環掃描後更新k*/
{
if (*(x+j) > *(x+j+1)) /*大的放在後面,小的放到前面*/
{
t = *(x+j);
*(x+j) = *(x+j+1);
*(x+j+1) = t; /*完成交換*/
k = j; /*保存最後下沉的位置。這樣k後面的都是排序排好了的。*/
}
}
}
}
/*
================================================
功能:希爾排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在直接插入排序演算法中,每次插入一個數,使有序序列只增加1個節點,
並且對插入下一個數沒有提供任何幫助。如果比較相隔較遠距離(稱為
增量)的數,使得數移動時能跨過多個元素,則進行一次比較就可能消除
多個元素交換。D.L.shell於1959年在以他名字命名的排序演算法中實現
了這一思想。演算法先將要排序的一組數按某個增量d分成若干組,每組中
記錄的下標相差d.對每組中全部元素進行排序,然後再用一個較小的增量
對它進行,在每組中再進行排序。當增量減到1時,整個要排序的數被分成
一組,排序完成。
下面的函數是一個希爾排序演算法的一個實現,初次取序列的一半為增量,
以後每次減半,直到增量為1。
希爾排序是不穩定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
int h, j, k, t;
for (h=n/2; h>0; h=h/2) /*控制增量*/
{
for (j=h; j<n; j++) /*這個實際上就是上面的直接插入排序*/
{
t = *(x+j);
for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
{
*(x+k+h) = *(x+k);
}
*(x+k+h) = t;
}
}
}
/*
================================================
功能:快速排序
輸入:數組名稱(也就是數組首地址)、數組中起止元素的下標
================================================
*/
/*
====================================================
演算法思想簡單描述:
快速排序是對冒泡排序的一種本質改進。它的基本思想是通過一趟
掃描後,使得排序序列的長度能大幅度地減少。在冒泡排序中,一次
掃描只能確保最大數值的數移到正確位置,而待排序序列的長度可能只
減少1。快速排序通過一趟掃描,就能確保某個數(以它為基準點吧)
的左邊各數都比它小,右邊各數都比它大。然後又用同樣的方法處理
它左右兩邊的數,直到基準點的左右只有一個元素為止。它是由
C.A.R.Hoare於1962年提出的。
顯然快速排序可以用遞歸實現,當然也可以用棧化解遞歸實現。下面的
函數是用遞歸實現的,有興趣的朋友可以改成非遞歸的。
快速排序是不穩定的。最理想情況演算法時間復雜度O(nlog2n),最壞O(n2)
=====================================================
*/
void quick_sort(int *x, int low, int high)
{
int i, j, t;
if (low < high) /*要排序的元素起止下標,保證小的放在左邊,大的放在右邊。這里以下標為low的元素為基準點*/
{
i = low;
j = high;
t = *(x+low); /*暫存基準點的數*/
while (i<j) /*循環掃描*/
{
while (i<j && *(x+j)>t) /*在右邊的只要比基準點大仍放在右邊*/
{
j--; /*前移一個位置*/
}
if (i<j)
{
*(x+i) = *(x+j); /*上面的循環退出:即出現比基準點小的數,替換基準點的數*/
i++; /*後移一個位置,並以此為基準點*/
}
while (i<j && *(x+i)<=t) /*在左邊的只要小於等於基準點仍放在左邊*/
{
i++; /*後移一個位置*/
}
if (i<j)
{
*(x+j) = *(x+i); /*上面的循環退出:即出現比基準點大的數,放到右邊*/
j--; /*前移一個位置*/
}
}
*(x+i) = t; /*一遍掃描完後,放到適當位置*/
quick_sort(x,low,i-1); /*對基準點左邊的數再執行快速排序*/
quick_sort(x,i+1,high); /*對基準點右邊的數再執行快速排序*/
}
}
/*
================================================
功能:堆排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進。
堆的定義如下:具有n個元素的序列(h1,h2,...,hn),當且僅當
滿足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
時稱之為堆。在這里只討論滿足前者條件的堆。
由堆的定義可以看出,堆頂元素(即第一個元素)必為最大項。完全二叉樹可以
很直觀地表示堆的結構。堆頂為根,其它為左子樹、右子樹。
初始時把要排序的數的序列看作是一棵順序存儲的二叉樹,調整它們的存儲順序,
使之成為一個堆,這時堆的根節點的數最大。然後將根節點與堆的最後一個節點
交換。然後對前面(n-1)個數重新調整使之成為堆。依此類推,直到只有兩個節點
的堆,並對它們作交換,最後得到有n個節點的有序序列。
從演算法描述來看,堆排序需要兩個過程,一是建立堆,二是堆頂與堆的最後一個元素
交換位置。所以堆排序有兩個函數組成。一是建堆的滲透函數,二是反復調用滲透函數
實現排序的函數。
堆排序是不穩定的。演算法時間復雜度O(nlog2n)。
*/
/*
功能:滲透建堆
輸入:數組名稱(也就是數組首地址)、參與建堆元素的個數、從第幾個元素開始
*/
void sift(int *x, int n, int s)
{
int t, k, j;
t = *(x+s); /*暫存開始元素*/
k = s; /*開始元素下標*/
j = 2*k + 1; /*右子樹元素下標*/
while (j<n)
{
if (j<n-1 && *(x+j) < *(x+j+1))/*判斷是否滿足堆的條件:滿足就繼續下一輪比較,否則調整。*/
{
j++;
}
if (t<*(x+j)) /*調整*/
{
*(x+k) = *(x+j);
k = j; /*調整後,開始元素也隨之調整*/
j = 2*k + 1;
}
else /*沒有需要調整了,已經是個堆了,退出循環。*/
{
break;
}
}
*(x+k) = t; /*開始元素放到它正確位置*/
}
/*
功能:堆排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
*/
void heap_sort(int *x, int n)
{
int i, k, t;
int *p;
for (i=n/2-1; i>=0; i--)
{
sift(x,n,i); /*初始建堆*/
}
for (k=n-1; k>=1; k--)
{
t = *(x+0); /*堆頂放到最後*/
*(x+0) = *(x+k);
*(x+k) = t;
sift(x,k,0); /*剩下的數再建堆*/
}
}
void main()
{
#define MAX 4
int *p, i, a[MAX];
/*錄入測試數據*/
p = a;
printf("Input %d number for sorting :\n",MAX);
for (i=0; i<MAX; i++)
{
scanf("%d",p++);
}
printf("\n");
/*測試選擇排序*/
p = a;
select_sort(p,MAX);
/**/
/*測試直接插入排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*測試冒泡排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*測試快速排序*/
/*
p = a;
quick_sort(p,0,MAX-1);
*/
/*測試堆排序*/
/*
p = a;
heap_sort(p,MAX);
*/
for (p=a, i=0; i<MAX; i++)
{
printf("%d ",*p++);
}
printf("\n");
system("pause");
}
㈡ C語言 各常見排序法的時間復雜度 急 請簡單說明
選擇排序演算法復雜度是O(n^2)。
插入排序是O(n^2)
快速排序快速排序是不穩定的。最理想情況演算法時間復雜度O(nlog2n),最壞O(n^2)。
堆排序演算法時間復雜度O(nlogn)。
歸並排序的時間復雜度是O(nlog2n)。
㈢ 關於c語言幾種排序方法的理解
關於對於 C 語言通常使用的幾種排序演算法(冒泡排序、堆排序、SHELL排序、快速排序、歸並排序等)的深入理解:哪一個排序演算法的執行效率最高、每一種排序演算法所佔用的系統空間、以及執行時間等,這個必須要通過學習計算機軟體專業中的專業課程:計算機演算法設計與分析,才能夠做到這一點的。
否則的話,只能夠按照數據結構(C語言版)中給出的 C 語言源代碼進行普通的編程實現代碼而已。而無法從計算機理論的角度上深入理解 C 語言中的幾種排序演算法。
㈣ 尋求c語言5種以上的簡單的排序方法
//直接插入排序
voidStaInsertSort(inta[],intn)
{
inti,j,tmp;
for(i=1;i<n;++i)
{
tmp=a[i];
j=i-1;
while(j>=0&&tmp<a[j])
{
a[j+1]=a[j];
--j;
}
a[j+1]=tmp;
}
}
/*折半排序*/
voidMidSort(inta[],intn)
{
inti,j;
intlow,high,mid;
inttmp;
for(i=1;i<n;i++)
{
tmp=a[i];
low=0,high=i-1;
while(low<=high)
{
mid=(low+high)/2;
if(a[mid]>tmp)
high=mid-1;
else
low=mid+1;
}
low=high,high=i;
while(high>low+1)
{
a[high]=a[high-1];
--high;
}
a[low+1]=tmp;
}
}
/*冒泡排序*/
voidMaoPaoSort(inta[],intn)
{
inti,j;
inttmp;
for(i=0;i<n-1;++i)
{
for(j=i+1;j<n;++j)
{
if(a[i]>a[j])
{
tmp=a[i];
a[i]=a[j];
a[j]=tmp;
}
}
}
}
/*快速排序*/
voidQuickSort(inta[],intlow,inthigh)
{
inti,j;
inttmp;
if(low<high)
{
i=low,j=high;
tmp=a[low];
while(i<j)
{
while(i<j&&a[j]>=tmp)
--j;
a[i]=a[j];
while(i<j&&a[i]<=tmp)
++i;
a[j]=a[i];
}
a[i]=tmp;
QuickSort(a,low,i-1);
QuickSort(a,i+1,high);
}
}
/*選擇排序*/
voidSelectSort(int*a,intn)
{
inti,j,k;
inttmp;
for(i=0;i<n-1;++i)
{
k=i;
for(j=i+1;j<n;++j)
if(a[k]>a[j])
k=j;
tmp=a[i];
a[i]=a[k];
a[k]=tmp;
}
}
/*堆排序*/
voidSift(inta[],intlow,inthigh)//堆調整函數
{
inti=low,j=2*i+1;
inttmp=a[i];
while(j<=high)
{
if(j<high&&a[j]<a[j+1])
++j;
if(tmp<a[j])
{
a[i]=a[j];
i=j;
j=2*i+1;
}
else
break;
}
a[i]=tmp;
}
voidHeapSort(inta[],intn)//堆排序函數
{
inti;
inttmp;
for(i=n/2-1;i>=0;--i)
Sift(a,i,n-1);
for(i=n-1;i>=1;--i)
{
tmp=a[0];
a[0]=a[i];
a[i]=tmp;
Sift(a,0,i-1);
}
}
㈤ C語言排序
//總共給你整理了7種排序演算法:希爾排序,鏈式基數排序,歸並排序
//起泡排序,簡單選擇排序,樹形選擇排序,堆排序,先自己看看吧,
//看不懂可以再問身邊的人或者查資料,既然可以上網,我相信你所在的地方信息流通方式應該還行,所有的程序全部在VC++6.0下編譯通過
//希爾排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void ShellInsert(SqList &L,int dk)
{ // 對順序表L作一趟希爾插入排序。本演算法是和一趟直接插入排序相比,
// 作了以下修改:
// 1.前後記錄位置的增量是dk,而不是1;
// 2.r[0]只是暫存單元,不是哨兵。當j<=0時,插入位置已找到。演算法10.4
int i,j;
for(i=dk+1;i<=L.length;++i)
if LT(L.r[i].key,L.r[i-dk].key)
{ // 需將L.r[i]插入有序增量子表
L.r[0]=L.r[i]; // 暫存在L.r[0]
for(j=i-dk;j>0&<(L.r[0].key,L.r[j].key);j-=dk)
L.r[j+dk]=L.r[j]; // 記錄後移,查找插入位置
L.r[j+dk]=L.r[0]; // 插入
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("%d ",L.r[i].key);
printf("\n");
}
void print1(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
void ShellSort(SqList &L,int dlta[],int t)
{ // 按增量序列dlta[0..t-1]對順序表L作希爾排序。演算法10.5
int k;
for(k=0;k<t;++k)
{
ShellInsert(L,dlta[k]); // 一趟增量為dlta[k]的插入排序
printf("第%d趟排序結果: ",k+1);
print(L);
}
}
#define N 10
#define T 3
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8},{55,9},{4,10}};
SqList l;
int dt[T]={5,3,1}; // 增量序列數組
for(int i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前: ");
print(l);
ShellSort(l,dt,T);
printf("排序後: ");
print1(l);
}
/*****************************************************************/
//鏈式基數排序
typedef int InfoType; // 定義其它數據項的類型
typedef int KeyType; // 定義RedType類型的關鍵字為整型
struct RedType // 記錄類型(同c10-1.h)
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項
};
typedef char KeysType; // 定義關鍵字類型為字元型
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
#define MAX_NUM_OF_KEY 8 // 關鍵字項數的最大值
#define RADIX 10 // 關鍵字基數,此時是十進制整數的基數
#define MAX_SPACE 1000
struct SLCell // 靜態鏈表的結點類型
{
KeysType keys[MAX_NUM_OF_KEY]; // 關鍵字
InfoType otheritems; // 其它數據項
int next;
};
struct SLList // 靜態鏈表類型
{
SLCell r[MAX_SPACE]; // 靜態鏈表的可利用空間,r[0]為頭結點
int keynum; // 記錄的當前關鍵字個數
int recnum; // 靜態鏈表的當前長度
};
typedef int ArrType[RADIX];
void InitList(SLList &L,RedType D[],int n)
{ // 初始化靜態鏈表L(把數組D中的數據存於L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max為關鍵字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 將10進制整型轉化為字元型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的長度<max的位數,在c前補'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}
int ord(char c)
{ // 返回k的映射(個位整數)
return c-'0';
}
void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 演算法10.15
{ // 靜態鍵表L的r域中記錄已按(keys[0],…,keys[i-1])有序。本演算法按
// 第i個關鍵字keys[i]建立RADIX個子表,使同一子表中記錄的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分別指向各子表中第一個和最後一個記錄
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化為空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord將記錄中第i個關鍵字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 將p所指的結點插入第j個子表中
}
}
int succ(int i)
{ // 求後繼函數
return ++i;
}
void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本演算法按keys[i]自小至大地將f[0..RADIX-1]所指各子表依次鏈接成
// 一個鏈表,e[0..RADIX-1]為各子表的尾指針。演算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一個非空子表,succ為求後繼函數
r[0].next=f[j];
t=e[j]; // r[0].next指向第一個非空子表中第一個結點
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一個非空子表
if(f[j])
{ // 鏈接兩個非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最後一個非空子表中的最後一個結點
}
void printl(SLList L)
{ // 按鏈表輸出靜態鏈表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}
void RadixSort(SLList &L)
{ // L是採用靜態鏈表表示的順序表。對L作基數排序,使得L成為按關鍵字
// 自小到大的有序靜態鏈表,L.r[0]為頭結點。演算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 將L改造為靜態鏈表
for(i=0;i<L.keynum;++i)
{ // 按最低位優先依次對各關鍵字進行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集後:\n",i+1);
printl(L);
printf("\n");
}
}
void print(SLList L)
{ // 按數組序號輸出靜態鏈表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}
void Sort(SLList L,int adr[]) // 改此句(類型)
{ // 求得adr[1..L.length],adr[i]為靜態鏈表L的第i個最小記錄的序號
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}
void Rearrange(SLList &L,int adr[]) // 改此句(類型)
{ // adr給出靜態鏈表L的有序次序,即L.r[adr[i]]是第i小的記錄。
// 本演算法按adr重排L.r,使其有序。演算法10.18(L的類型有變)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(類型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暫存記錄L.r[i]
while(adr[j]!=i)
{ // 調整L.r[adr[j]]的記錄到位直到adr[j]=i為止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 記錄按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}
#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域還沒賦值):\n");
print(l);
RadixSort(l);
printf("排序後(靜態鏈表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序後(重排記錄):\n");
print(l);
}
/*******************************************/
//歸並排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void Merge(RedType SR[],RedType TR[],int i,int m,int n)
{ // 將有序的SR[i..m]和SR[m+1..n]歸並為有序的TR[i..n] 演算法10.12
int j,k,l;
for(j=m+1,k=i;i<=m&&j<=n;++k) // 將SR中記錄由小到大地並入TR
if LQ(SR[i].key,SR[j].key)
TR[k]=SR[i++];
else
TR[k]=SR[j++];
if(i<=m)
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l]; // 將剩餘的SR[i..m]復制到TR
if(j<=n)
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l]; // 將剩餘的SR[j..n]復制到TR
}
void MSort(RedType SR[],RedType TR1[],int s, int t)
{ // 將SR[s..t]歸並排序為TR1[s..t]。演算法10.13
int m;
RedType TR2[MAXSIZE+1];
if(s==t)
TR1[s]=SR[s];
else
{
m=(s+t)/2; // 將SR[s..t]平分為SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m); // 遞歸地將SR[s..m]歸並為有序的TR2[s..m]
MSort(SR,TR2,m+1,t); // 遞歸地將SR[m+1..t]歸並為有序的TR2[m+1..t]
Merge(TR2,TR1,s,m,t); // 將TR2[s..m]和TR2[m+1..t]歸並到TR1[s..t]
}
}
void MergeSort(SqList &L)
{ // 對順序表L作歸並排序。演算法10.14
MSort(L.r,L.r,1,L.length);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 7
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
MergeSort(l);
printf("排序後:\n");
print(l);
}
/**********************************************/
//起泡排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status;
typedef int Boolean;
#define N 8
void bubble_sort(int a[],int n)
{ // 將a中整數序列重新排列成自小至大有序的整數序列(起泡排序)
int i,j,t;
Status change;
for(i=n-1,change=TRUE;i>1&&change;--i)
{
change=FALSE;
for(j=0;j<i;++j)
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
change=TRUE;
}
}
}
void print(int r[],int n)
{
int i;
for(i=0;i<n;i++)
printf("%d ",r[i]);
printf("\n");
}
void main()
{
int d[N]={49,38,65,97,76,13,27,49};
printf("排序前:\n");
print(d,N);
bubble_sort(d,N);
printf("排序後:\n");
print(d,N);
}
/****************************************************/
//簡單選擇排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
int SelectMinKey(SqList L,int i)
{ // 返回在L.r[i..L.length]中key最小的記錄的序號
KeyType min;
int j,k;
k=i; // 設第i個為最小
min=L.r[i].key;
for(j=i+1;j<=L.length;j++)
if(L.r[j].key<min) // 找到更小的
{
k=j;
min=L.r[j].key;
}
return k;
}
void SelectSort(SqList &L)
{ // 對順序表L作簡單選擇排序。演算法10.9
int i,j;
RedType t;
for(i=1;i<L.length;++i)
{ // 選擇第i小的記錄,並交換到位
j=SelectMinKey(L,i); // 在L.r[i..L.length]中選擇key最小的記錄
if(i!=j)
{ // 與第i個記錄交換
t=L.r[i];
L.r[i]=L.r[j];
L.r[j]=t;
}
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
SelectSort(l);
printf("排序後:\n");
print(l);
}
/************************************************/
//樹形選擇排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void TreeSort(SqList &L)
{ // 樹形選擇排序
int i,j,j1,k,k1,l,n=L.length;
RedType *t;
l=(int)ceil(log(n)/log(2))+1; // 完全二叉樹的層數
k=(int)pow(2,l)-1; // l層完全二叉樹的結點總數
k1=(int)pow(2,l-1)-1; // l-1層完全二叉樹的結點總數
t=(RedType*)malloc(k*sizeof(RedType)); // 二叉樹採用順序存儲結構
for(i=1;i<=n;i++) // 將L.r賦給葉子結點
t[k1+i-1]=L.r[i];
for(i=k1+n;i<k;i++) // 給多餘的葉子的關鍵字賦無窮大
t[i].key=INT_MAX;
j1=k1;
j=k;
while(j1)
{ // 給非葉子結點賦值
for(i=j1;i<j;i+=2)
t[i].key<t[i+1].key?(t[(i+1)/2-1]=t[i]):(t[(i+1)/2-1]=t[i+1]);
j=j1;
j1=(j1-1)/2;
}
for(i=0;i<n;i++)
{
L.r[i+1]=t[0]; // 將當前最小值賦給L.r[i]
j1=0;
for(j=1;j<l;j++) // 沿樹根找結點t[0]在葉子中的序號j1
t[2*j1+1].key==t[j1].key?(j1=2*j1+1):(j1=2*j1+2);
t[j1].key=INT_MAX;
while(j1)
{
j1=(j1+1)/2-1; // 序號為j1的結點的雙親結點序號
t[2*j1+1].key<=t[2*j1+2].key?(t[j1]=t[2*j1+1]):(t[j1]=t[2*j1+2]);
}
}
free(t);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
TreeSort(l);
printf("排序後:\n");
print(l);
}
/****************************/
//堆排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};
struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
typedef SqList HeapType; // 堆採用順序表存儲表示
void HeapAdjust(HeapType &H,int s,int m) // 演算法10.10
{ // 已知H.r[s..m]中記錄的關鍵字除H.r[s].key之外均滿足堆的定義,本函數
// 調整H.r[s]的關鍵字,使H.r[s..m]成為一個大頂堆(對其中記錄的關鍵字而言)
RedType rc;
int j;
rc=H.r[s];
for(j=2*s;j<=m;j*=2)
{ // 沿key較大的孩子結點向下篩選
if(j<m&<(H.r[j].key,H.r[j+1].key))
++j; // j為key較大的記錄的下標
if(!LT(rc.key,H.r[j].key))
break; // rc應插入在位置s上
H.r[s]=H.r[j];
s=j;
}
H.r[s]=rc; // 插入
}
void HeapSort(HeapType &H)
{ // 對順序表H進行堆排序。演算法10.11
RedType t;
int i;
for(i=H.length/2;i>0;--i) // 把H.r[1..H.length]建成大頂堆
HeapAdjust(H,i,H.length);
for(i=H.length;i>1;--i)
{ // 將堆頂記錄和當前未經排序子序列H.r[1..i]中最後一個記錄相互交換
t=H.r[1];
H.r[1]=H.r[i];
H.r[i]=t;
HeapAdjust(H,1,i-1); // 將H.r[1..i-1]重新調整為大頂堆
}
}
void print(HeapType H)
{
int i;
for(i=1;i<=H.length;i++)
printf("(%d,%d)",H.r[i].key,H.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
HeapType h;
int i;
for(i=0;i<N;i++)
h.r[i+1]=d[i];
h.length=N;
printf("排序前:\n");
print(h);
HeapSort(h);
printf("排序後:\n");
print(h);
}
㈥ c語言三種排序
常用的c語言排序演算法主要有三種即冒泡法排序、選擇法排序、插入法排序。
一、冒泡排序冒泡排序:
是從第一個數開始,依次往後比較,在滿足判斷條件下進行交換。代碼實現(以降序排序為例)
#include<stdio.h>
int main()
{
int array[10] = { 6,9,7,8,5,3,4,0,1,2 };
int temp;
for (int i = 0; i < 10; i++)
{//循環次數
for (int j = 0; j <10 - i-1; j++)
{
if (array[j] < array[j+1])
{//前面一個數比後面的數大時發生交換 temp = array[j];
array[j] = array[j+1];
array[j + 1] = temp;
}
}
} //列印數組 for (int i = 0; i < 10; i++) printf("%2d", array[i]); return 0;}}
二、選擇排序以升序排序為例:
就是在指定下標的數組元素往後(指定下標的元素往往是從第一個元素開始,然後依次往後),找出除指定下標元素外的值與指定元素進行對比,滿足條件就進行交換。與冒泡排序的區別可以理解為冒泡排序是相鄰的兩個值對比,而選擇排序是遍歷數組,找出數組元素與指定的數組元素進行對比。(以升序為例)
#include<stdio.h>
int main()
{
int array[10] = { 6,9,7,8,5,3,4,0,1,2 };
int temp, index;
for (int i = 0; i < 9; i++) {
index = i;
for (int j = i; j < 10; j++)
{
if (array[j] < array[index])
index = j;
}
if(i != index)
{
temp = array[i];
array[i] = array[index];
array[index] = temp;
}
for(int i=0;i<10:i++)
printf("%2d"array[i])
return 0;
}
三、快速排序
是通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
void QuickSort(int* arr, int size)
{
int temp, i, j;
for(i = 1; i <size; i++)
for(j=i; j>0; j--)
{
if(arr[j] <arr[j-1])
{
temp = arr[j];
arr[j]=arr[j-1];
arr[j-1]=temp;
}
}
}
㈦ c語言 堆排序演算法升序排列N個數
#include<cstdio>
intarr[120000];
intmain()
{
intT,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(inti=1;i<=n;i++)
scanf("%d",&arr[i]);
sort(arr+1,arr+n+1);
for(inti=1;i<=n;i++)
printf("%d%c",arr[i],i==n?' ':'';
}
return0;
}
㈧ C語言堆排序法誰能通俗易懂又清晰地講解一下謝謝
您可以找本數據結構的書看看,比如清華嚴尉敏的《數據結構》
以下摘抄於 http://student.zjzk.cn/course_ware/data_structure/web/paixu/paixu8.4.2.1.htm 這個網站的講解挺不錯,您可以看看
1、 堆排序定義
n個關鍵字序列Kl,K2,…,Kn稱為堆,當且僅當該序列滿足如下性質(簡稱為堆性質):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若將此序列所存儲的向量R[1..n]看做是一棵完全二叉樹的存儲結構,則堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉結點的關鍵字均不大於(或不小於)其左右孩子(若存在)結點的關鍵字。
3、堆排序特點
堆排序(HeapSort)是一樹形選擇排序。
堆排序的特點是:在排序過程中,將R[l..n]看成是一棵完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系【參見二叉樹的順序存儲結構】,在當前無序區中選擇關鍵字最大(或最小)的記錄。
5、堆排序
堆排序利用了大根堆(或小根堆)堆頂記錄的關鍵字最大(或最小)這一特徵,使得在當前無序區中選取最大(或最小)關鍵字的記錄變得簡單。
(1)用大根堆排序的基本思想
① 先將初始文件R[1..n]建成一個大根堆,此堆為初始的無序區
② 再將關鍵字最大的記錄R[1](即堆頂)和無序區的最後一個記錄R[n]交換,由此得到新的無序區R[1..n-1]和有序區R[n],且滿足R[1..n-1].keys≤R[n].key
③由於交換後新的根R[1]可能違反堆性質,故應將當前無序區R[1..n-1]調整為堆。然後再次將R[1..n-1]中關鍵字最大的記錄R[1]和該區間的最後一個記錄R[n-1]交換,由此得到新的無序區R[1..n-2]和有序區R[n-1..n],且仍滿足關系R[1..n-2].keys≤R[n-1..n].keys,同樣要將R[1..n-2]調整為堆。
……
直到無序區只有一個元素為止。
(2)大根堆排序演算法的基本操作:
① 初始化操作:將R[1..n]構造為初始堆;
② 每一趟排序的基本操作:將當前無序區的堆頂記錄R[1]和該區間的最後一個記錄交換,然後將新的無序區調整為堆(亦稱重建堆)。
注意:
①只需做n-1趟排序,選出較大的n-1個關鍵字即可以使得文件遞增有序。
②用小根堆排序與利用大根堆類似,只不過其排序結果是遞減有序的。堆排序和直接選擇排序相反:在任何時刻,堆排序中無序區總是在有序區之前,且有序區是在原向量的尾部由後往前逐步擴大至整個向量為止。
(3)堆排序的演算法:
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元
int i;
BuildHeap(R); //將R[1-n]建成初始堆
for(i=n;i>1;i--){ //對當前無序區R[1..i]進行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //將堆頂和堆中最後一個記錄交換
Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質
} //endfor
} //HeapSort
㈨ C語言排序演算法一共多少種
選擇排序
#include<iostream>
usingnamespacestd;
voidselect_sort(intarr[],intnum);
voidoutput_array(intarr[],intnum);
intmain()
{
inta[10];
for(inti=0;i<10;i++)
{
cin>>a[i];
}
select_sort(a,10);
output_array(a,10);
return0;
}
voidselect_sort(intarray[],intn)//形參array是數組名
{
inti,j,k,t;
for(i=0;i<n-1;i++)
{
k=i;//先設第i個就為最小
for(j=i+1;j<n;j++)
if(array[j]<array[k])
k=j;//通過循環,得到k為最小
t=array[k];//交換a[i]和a[k]
array[k]=array[i];
array[i]=t;
}
return;
}
voidoutput_array(intarr[],intnum)
{
inti;
for(i=0;i<num;i++)
{
cout<<arr[i];
cout<<endl;
}
return;
}
2.冒泡排序
#include<stdio.h>
intmain()
{
inti,j,a[10],t;
for(i=0;i<10;i++)
scanf("%d",&a[i]);
for(i=0;i<10;i++)
for(j=i+1;j<10;j++)
if(a[i]>a[j])
{
t=a[j];
a[j]=a[i];
a[i]=t;
}
for(i=0;i<10;i++)
printf("%d",a[i]);
return0;
}
3.堆排序
#include<iostream>
usingnamespacestd;
voidpaii(inta[20],inti,intm)
{
intk,t;
t=a[i];
k=2*i+1;
while(k<m)
{
if((k<m-1)&&(a[k]<a[k+1]))
k++;
if(t<a[k])
{
a[i]=a[k];
i=k;
k=2*i+1;
}
elsebreak;
}
a[i]=t;
}
voidipai(inta[20],intn)
{
inti,k;
for(i=n/2-1;i>=0;i--)
paii(a,i,n);
for(i=n-1;i>=1;i--)
{
k=a[0];
a[0]=a[i];
a[i]=k;
paii(a,0,i);
}}
intmain()
{
inta[10],i;
for(i=0;i<10;i++)
cin>>a[i];
ipai(a,10);
for(i=0;i<10;i++)
cout<<a[i]<<endl;
}
4.快速排序
#include<iostream>
usingnamespacestd;
voidQuicksort(inta[],intlow,inthigh)
{
if(low>=high)
{
return;
}
intfirst=low;
intlast=high;
intkey=a[first];
while(first<last)
{
while(first<last&&a[last]>=key)
--last;
a[first]=a[last];
while(first<last&&a[first]<=key)
++first;
a[last]=a[first];
}
a[first]=key;
Quicksort(a,low,first-1);
Quicksort(a,last+1,high);
}
intmain()
{
inti,a[100],x,n=0;
while(cin>>x)
{
a[n]=x;
n++;
}
n--;
Quicksort(a,0,n);
for(i=0;i<=n;i++)
cout<<a[i]<<"";
cout<<endl;
return0;
}
5. 基數排序
#include<stdio.h>
#include<stdlib.h>
intmain(){
intdata[10]={73,22,93,43,55,14,82,65,39,81};//對十個數進行排序
inttemp[10][10]={0};//構造一個臨時二維數組,其值為0
intorder[10]={0};//構造一維數組,其值為0
inti,j,k,n,lsd;
k=0;n=1;
for(i=0;i<10;i++)printf("%d",data[i]);//在排序前,對這10個數列印一遍
putchar(' ');
while(n<=10){
for(i=0;i<10;i++){
lsd=((data[i]/n)%10);//lsd先對個位取余,然後再對十位取余,注意循環
temp[lsd][order[lsd]]=data[i];//temp[3][0]=73,temp[2][0]=22,temp[3][1]=93,temp[3][2]=43,⋯⋯
order[lsd]++;//需要區分的是lsd和order[lsd],這兩個不是一樣的概念嗷
}
printf(" 重新排列:");
for(i=0;i<10;i++){
if(order[i]!=0)
for(j=0;j<order[i];j++){
data[k]=temp[i][j];
printf("%d",data[k]);
k++;
}
order[i]=0;
}
n*=10;//第二次用十位
k=0;
}
putchar(' ');
printf(" 排序後:");
for(i=0;i<10;i++)printf("%d",data[i]);
return0;
}
6.希爾排序
#include<iostream>
usingnamespacestd;
voidshell_sort(inta[],intn);
intmain()
{
intn,a[10000];
cin>>n;
for(inty=0;y<n;y++)
cin>>a[y];
shell_sort(a,n);
for(inti=0;i<n;i++)
cout<<a[i]<<"";
cout<<endl;
}
voidshell_sort(inta[],intn)
{
intgap,k,temp;//定義增量;
for(gap=3;gap>0;gap--)//設置初始增量,遞減;
{
for(inti=0;i<gap;i++)//按增量分組;
{
for(intj=i+gap;j<n;j=j+gap)//每組分別比較大小;
{
if(a[j]<a[j-gap])
{
temp=a[j];
k=j-gap;
while(k>=0&&a[k]>temp)
{
a[k+gap]=a[k];
k=k-gap;
}
a[k+gap]=temp;
}
}
}
}
}
7.歸並排序
#include<iostream>
usingnamespacestd;
voidMergeSort(intp[],ints,intm,intt)
{
intq[100];//q[100]用來存放排好的序列
inti=s;
intj=m+1;
intk=s;
while(i<=m&&j<=t)
{
if(p[i]<=p[j])
q[k++]=p[i++];
else
q[k++]=p[j++];
}
if(i<=m)
while(i<=m)
q[k++]=p[i++];
elsewhile(j<=t)
q[k++]=p[j++];
for(intn=s;n<=t;n++)
p[n]=q[n];
}
voidMerge(intp[],ints,intt)
{
if(s<t)
{
intm=(s+t)/2;//將數組分成兩半
Merge(p,s,m);//遞歸拆分左數組
Merge(p,m+1,t);//遞歸拆分右數組
MergeSort(p,s,m,t);//合並數組
}
}
intmain()
{
intn;
intp[100];
cin>>n;
for(inti=0;i<n;i++)
cin>>p[i];
Merge(p,0,n-1);
for(intj=0;j<n;j++)
cout<<p[j]<<"";
cout<<endl;
return0;
}
排序方法基本就這些,還有雙向冒泡這種拓展的排序方法,還有直接排序如桶排序
㈩ 數據結構C語言--三種以上的排序演算法
快速排序:
void QSort(int a[], int l, int r) //單關鍵字交換法快排
{
int i = l, j = r, mid = (i + j) / 2; //二分[i,j]區間
while (i <= j) //讓a[mid]左邊都比a[mid]小,右邊都比a[mid]大
{
while (a[i] < a[mid]) //找到一個元素a[i]比a[mid]小
i++;
while (a[j] > a[mid]) //找到一個元素a[j]比a[mid]大
j--;
if (i <= j) //交換a[i]和a[j],並讓指針向中間靠攏
Swap(a[i++], a[j--]);
}
if (i < r)
QSort(a, i, r); //對右區間[i,r]遞歸排序
if (l < j)
QSort(a, l, j); //對左區間[l,j]遞歸排序
}
歸並排序:
void Merge(int a[], int l, int m, int r) //將a中區間[l, r]合並為有序
{
int x[101], y[101]; //循環變數
int i, j, k;
int l1 = m - l + 1, l2 = r - m; //l1表示區間[l, m]的長度,l2表示區間[m + 1, r]的長度
for (i = 1; i <= l1; i++) //將a中區間[l, m]復制到x中
{
x[i] = a[l + i - 1];
}
for (i = 1; i <= l2; i++) //將a中區間[m + 1, r]復制到y中
{
y[i] = a[m + i];
}
x[l1 + 1] = MaxInt; //設置一個很大的數作為結束標志
y[l2 + 1] = MaxInt;
i = 1;
j = 1;
for (k = l; k <= r; k++) //將兩個區間合並成為一個有序區間
{
if (x[i] <= y[j])
{
a[k] = x[i++];
}
else
{
a[k] = y[j++];
}
}
}
void MergeSort(int a[], int l, int r) //對a數組的[l, r]區間排序
{
int m;
if (l < r)
{
m = (l + r) / 2; //二分區間[l, r]
MergeSort(a, l, m); //遞歸二分區間[l, m]
MergeSort(a, m + 1, r); //遞歸二分區間[m + 1, r]
Merge(a, l, m, r); //合並區間[l, m]和[m + 1, r]
}
}
二叉排序樹排序:
struct BinaryTree //二叉樹結構
{
int data, p, l, r; //data數值域,p父節點編號,l左兒子編號,r右兒子編號
};
int root = 0;
void Init(BinaryTree a[], int &n) //讀入數據域,並初始化樹
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i].data;
a[i].p = a[i].l = a[i].r = -1;
}
}
void Insert(BinaryTree a[], int i) //在二叉查找樹中插入編號為 i 的節點
{
int parent = -1, x = a[1].p; //parent 始終指向 x 的父節點編號
while (x != -1) //向下搜索,直到找到最下一層
{
parent = x;
if (a[i].data < a[x].data)
x = a[x].l;
else
x = a[x].r;
}
a[i].p = parent; //把第 i 號節點的父親指向parent
if (parent != -1) //判斷樹是否為空
{
if (a[i].data < a[parent].data) //向父節點插入兒子
a[parent].l = i;
else
a[parent].r = i;
}
else //為空就以 i 節點為根節點
a[root].p = i;
}
void BuildTree(BinaryTree a[], int n) //建立二叉查找樹
{
root = 1;
for (int i = 1; i <= n; i++) //依次插入 n 個節點到二叉查找樹
{
Insert(a, i);
}
a[root].p = -1;
}
void Sort(BinaryTree a[], int i) //中序遍歷輸出
{
if (a[i].l > -1) //遞歸遍歷左兒子
Sort(a, a[i].l);
cout << a[i].data << " "; //輸出節點
if (a[i].r > -1) //遞歸遍歷右兒子
Sort(a, a[i].r);
}
堆排序:
void Heap(int a[], int n, int p) //維護最大(最小)堆,維護以P為根的堆
{
int l = p * 2, r = l + 1, t = p; //左兒子編號為2P,右兒子為2P+1,初始化根節點P為最大
if ((l <= n) && (a[l] > a[p])) //找一個最大的數,維護最大堆(改為<就是維護最小堆)
t = l;
if ((r <= n) && (a[r] > a[t])) //找一個最大的數,維護最大堆(改為<就是維護最小堆)
t = r;
if (p != t) //如果根節點不是最大,和最大的交換,再遞歸維護堆
{
Swap(a[p], a[t]);
Heap(a, n, t);
}
}
void HeapSort(int a[], int n)
{
int i;
for (i = n / 2; i >= 1; i--) //n / 2開始必然是根節點,依次調用Heap,建立一個最大堆
Heap(a, n, i);
for (i = n; i >= 2; i--) //每次將堆頂和當前堆最後一個節點(i)交換,然後將[1, i - 1]重新堆化
{
Swap(a[i], a[1]);
Heap(a, i - 1, 1);
}
}
插入排序:
void InsertionSort(int a[], int l, int r) //對區間[l, r]執行插入排序
{
int i, j, t;
for (i = l + 1; i <= r; i++)
{
j = i - 1;
t = a[i];
while ((j >= l) && (a[j] > t)) //後移操作,並找到正確的位置
{
a[j + 1] = a[j];
j--;
}
a[j + 1] = t;
}
}
以上所有的Swap函數的意思都是交換兩個變數。