python深度學習框架
A. python的深度學習框架有哪些
中公教育聯合中科院專家打造的深度學習分八個階段進行學習:
第一階段AI概述及前沿應用成果介紹
深度學習的最新應用成果
單層/深度學習與機器學習
人工智慧的關系及發展簡
梯度下降優化方法
前饋神經網路的基本結構和訓練過程
反向傳播演算法
TensorFlow開發環境安裝
「計算圖」編程模型
深度學習中圖像識別的操作原理
語言模型及詞嵌入
詞嵌入的學習過程
循環神經網路的基本結構
時間序列反向傳播演算法
長短時記憶網路(LSTM)的基本結構
LSTM實現語言模型
生成式對抗網路(GAN)的基本結構和原理
GAN的訓練過程
GAN用於圖片生成的實現
多GPU並行實現
分布式並行的環境搭建
分布式並行實現
強化學習介紹
智能體Agent的深度決策機制(上)
智能體Agent的深度決策機制(中)
智能體Agent的深度決策機制(下)
數據集介紹及項目需求分析
OpenCV庫介紹及車牌定位
車牌定位
車牌識別
學員項目案例評講
深度學習前沿技術簡介
元學習
遷移學習等
第二階段神經網路原理及TensorFlow實戰
第三階段循環神經網路原理及項目實戰
第四階段生成式對抗網路原理及項目實戰
第五階段深度學習的分布式處理及項目實戰
第六階段深度強化學習及項目實戰
第七階段車牌識別項目實戰
第八階段深度學習前沿技術簡介
詳情查看深度學習。
B. 《Python深度學習》pdf下載在線閱讀全文,求百度網盤雲資源
《Python深度學習》([美]弗朗索瓦·肖萊)電子書網盤下載免費在線閱讀
鏈接:https://pan..com/s/1oiRUoqTw5yUwZAG3fz3UyQ
書名:Python深度學習
豆瓣評分:9.6
作者:[美] 弗朗索瓦•肖萊
出版社:人民郵電出版社
出品方:圖靈教育
原作名:Deep Learning with Python
譯者:張亮
出版年:2018-8
頁數:292
內容簡介
本書由Keras之父、現任Google人工智慧研究員的弗朗索瓦肖萊(Franois Chollet)執筆,詳盡介紹了用Python和Keras進行深度學習的探索實踐,涉及計算機視覺、自然語言處理、生成式模型等應用。書中包含30多個代碼示例,步驟講解詳細透徹。由於本書立足於人工智慧的可達性和大眾化,讀者無須具備機器學習相關背景知識即可展開閱讀。在學習完本書後,讀者將具備搭建自己的深度學習環境、建立圖像識別模型、生成圖像和文字等能力。
作者簡介
弗朗索瓦•肖萊(François Chollet)
Keras之父,TensorFlow機器學習框架貢獻者,Kaggle競賽教練,個人Kaggle競賽全球排名曾獲得第17名。目前任職於Google,從事人工智慧研究,尤其關注計算機視覺與機器學習在形式推理方面的應用。
【譯者簡介】
張亮(hysic)
畢業於北京大學物理學院,愛好機器學習和數據分析的核安全工程師,譯有《Python數據處理》《Python機器學習基礎教程》等。
C. 如何評價Python的深度學習框架DeepPy
timeline 上出現這個問題,以為是新框架,結果一個沒什麼答案的問題竟然有200+關注。。。DL是多火 & 大家是多麼懶。。。
看了一下項目 GitHub - andersbll/deeppy: Deep learning in Python 最近一次更新是一個月前,共有兩個contributors,感覺項目基本上跪了。。。
不過總計800+的stars ,總體代碼低於2W行,應該是從基礎學起的好東西
D. pytorch是什麼
PyTorch是一個開源的Python機器學習庫,基於Torch,用於自然語言處理等應用程序。
由Facebook人工智慧研究院(FAIR)基於Torch推出了PyTorch。它是一個基於Python的可續計算包,提供兩個高級功能:具有強大的GPU加速的張量計算(如NumPy)。包含自動求導系統的深度神經網路。
PyTorch的發展:
PyTorch的前身是Torch,其底層和Torch框架一樣,但是使用Python重新寫了很多內容,不僅更加靈活,支持動態圖,而且提供了Python介面。它是由Torch7團隊開發,是一個以Python優先的深度學習框架,不僅能夠實現強大的GPU加速,同時還支持動態神經網路。
PyTorch既可以看作加入了GPU支持的numpy,同時也可以看成一個擁有自動求導功能的強大的深度神經網路。除了Facebook外,它已經被Twitter、CMU和Salesforce等機構採用。
E. 人工智慧 Python深度學習庫有哪些
由於Python的易用性和可擴展性,眾多深度學習框架提供了Python介面,其中較為流行的深度學習庫如下:
第一:Caffe
Caffe是一個以表達式、速度和模塊化為核心的深度學習框架,具備清晰、可讀性高和快速的特性,在視頻、圖像處理方面應用較多。
Caffe中的網路結構與優化都以配置文件形式定義,容易上手,無須通過代碼構建網路;網路訓練速度快,能夠訓練大型數據集與State-of-the-art的模型,模塊化的組件可以方便地拓展到新的模型與學習任務上。
第二:Theano
Theano誕生於2008年,是一個高性能的符號計算及深度學習庫,被認為是深度學習庫的始祖之一,也被認為是深度學習研究和應用的重要標准之一。其核心是一個數學表達式的編譯器,專門為處理大規模神經網路訓練的計算而設計。
Theano很好地整合了Numpy,可以直接使用Numpy的Ndarray,使得API介面學習成本大為降低;其計算穩定性好,可以精準地計算輸出值很小的函數;可動態地生成C或者CUDA代碼,用來編譯成高效的機器代碼。
第三:TensorFlow
TensorFlow是相對高階的機器學習庫,其核心代碼使用C++編寫,並支持自動求導,使得用戶可以方便地設計神經網路結構,不需要親自編寫C++或CUDA代碼,也無須通過反向傳播求解梯度。由於底層使用C++語言編寫,運行效率得到了保證,並簡化線上部署的復雜度。
TensorFlow不只局限於神經網路,其數據流式圖還支持非常自由的演算法表達,也可以輕松實現深度學習以外的機器學習演算法。
第四:Keras
Keras是一個高度模塊化的神經網路庫,使用Python實現,並可以同時運行在TensorFlow和Theano上。
Keras專精於深度學習,其提供了到目前為止最方便的API,用戶僅需將高級的模塊拼在一起便可設計神經網路,大大降低了編程開銷與理解開銷。
F. python深度學習框架學哪個
Python 深度學習生態系統在這幾年中的演變實屬驚艷。pylearn2,已經不再被積極地開發或者維護,大量的深度學習庫開始接替它的位置。這些庫每一個都各有千秋。我們已經在 indico 的產品或者開發中使用了以下列表中的大部分的技術,但是對於剩下一些我們沒有使用的,我將會借鑒他人的經驗來幫助給出 Python 深度學習生態系統的清晰的、詳盡的理解。
確切地說,我們將會關註:
Theano
Lasagne
Blocks
TensorFlow
Keras
MXNet
PyTorch
下面是對這 7 大 Python 深度學習框架的描述以及優缺點的介紹。
Theano
描述:Theano 是一個 Python 庫,允許你定義、優化並且有效地評估涉及到多維數組的數學表達式。它與 GPUs 一起工作並且在符號微分方面表現優秀。
概述:Theano 是數值計算的主力,它支持了許多我們列表當中的其他的深度學習框架。Theano 由 Frédéric Bastien 創建,這是蒙特利爾大學機器學習研究所(MILA)背後的一個非常優秀的研究團隊。它的 API 水平較低,並且為了寫出效率高的 Theano,你需要對隱藏在其他框架幕後的演算法相當的熟悉。如果你有著豐富的學術機器學習知識,正在尋找你的模型的精細的控制方法,或者想要實現一個新奇的或者不同尋常的模型,Theano 是你的首選庫。總而言之,為了靈活性,Theano 犧牲了易用性。
優點:
靈活
正確使用時的高性能
缺點:
較高的學習難度
低水平的 API
編譯復雜的符號圖可能很慢
Lasagne
描述:在 Theano 上建立和訓練神經網路的輕量級庫
概述:因為 Theano 致力於成為符號數學中最先且最好的庫,Lasagne 提供了在 Theano 頂部的抽象,這使得它更適合於深度學習。它主要由當前 DeepMind 研究科學家 Sander Dieleman 編寫並維護。Lasagne 並非是根據符號變數之間的函數關系來指定網路模型,而是允許用戶在層級思考,為用戶提供了例如「Conv2DLayer」和「DropoutLayer」的構建塊。Lasagne 在犧牲了很少的靈活性的同時,提供了豐富的公共組件來幫助圖層定義、圖層初始化、模型正則化、模型監控和模型訓練。
優點:
仍舊非常靈活
比 Theano 更高級的抽象
文檔和代碼中包含了各種 Pasta Puns
缺點:
社區小
Blocks
描述:用於構建和訓練神經網路的 Theano 框架
概述:與 Lasagne 類似,Blocks 是在 Theano 頂部添加一個抽象層使深度學習模型比編寫原始的 Theano 更清晰、更簡單、定義更加標准化。它是由蒙特利爾大學機器學習研究所(MILA)編寫,其中一些人為搭建 Theano 和第一個神經網路定義的高級介面(已經淘汰的 PyLearn2)貢獻了自己的一份力量。比起 Lasagne,Blocks 靈活一點,代價是入門台階較高,想要高效的使用它有不小的難度。除此之外,Blocks 對遞歸神經網路架構(recurrent neural network architectures)有很好的支持,所以如果你有興趣探索這種類型的模型,它值得一看。除了 TensorFlow,對於許多我們已經部署在 indico 產品中的 API,Blocks 是其首選庫。
優點:
仍舊非常靈活
比 Theano 更高級的抽象
易於測試
缺點:
較高的學習難度
更小的社區
TensorFlow
描述:用於數值計算的使用數據流圖的開源軟體庫
概述:TensorFlow 是較低級別的符號庫(比如 Theano)和較高級別的網路規范庫(比如 Blocks 和 Lasagne)的混合。即使它是 Python 深度學習庫集合的最新成員,在 Google Brain 團隊支持下,它可能已經是最大的活躍社區了。它支持在多 GPUs 上運行深度學習模型,為高效的數據流水線提供使用程序,並具有用於模型的檢查,可視化和序列化的內置模塊。最近,TensorFlow 團隊決定支持 Keras(我們列表中下一個深度學習庫)。雖然 TensorFlow 有著自己的缺點,但是社區似乎同意這一決定,社區的龐大規模和項目背後巨大的動力意味著學習 TensorFlow 是一次安全的賭注。因此,TensorFlow 是我們今天在 indico 選擇的深度學習庫。
優點:
由軟體巨頭 Google 支持
非常大的社區
低級和高級介面網路訓練
比基於 Theano 配置更快的模型編譯
完全地多 GPU 支持
缺點:
雖然 Tensorflow 正在追趕,但是最初在許多基準上比基於 Theano 的慢。
RNN 支持仍不如 Theano
Keras
描述:Python 的深度學習庫。支持 Convnets、遞歸神經網路等。在 Theano 或者 TensorFlow 上運行。
概述:Keras 也許是水平最高,對用戶最友好的庫了。由 Francis Chollet(Google Brain 團隊中的另一個成員)編寫和維護。它允許用戶選擇其所構建的模型是在 Theano 上或是在 TensorFlow 上的符號圖上執行。Keras 的用戶界面受啟發於 Torch,所以如果你以前有過使用 Lua 語言的機器學習經驗,Keras 絕對值得一看。由於部分非常優秀的文檔和其相對易用性,Keras 的社區非常大並且非常活躍。最近,TensorFlow 團隊宣布計劃與 Keras 一起支持內置,所以很快 Keras 將是 TensorFlow 項目的一個分組。
優點:
可供選擇的 Theano 或者 TensorFlow 後端
直觀、高級別的埠
更易學習
缺點:
不太靈活,比其他選擇更規范
MXNet
描述:MXNet 是一個旨在提高效率和靈活性的深度學習框架。
概述:MXNet 是亞馬遜(Amazon)選擇的深度學習庫,並且也許是最優秀的庫。它擁有類似於 Theano 和 TensorFlow 的數據流圖,為多 GPU 配置提供了良好的配置,有著類似於 Lasagne 和 Blocks 更高級別的模型構建塊,並且可以在你可以想像的任何硬體上運行(包括手機)。對 Python 的支持只是其冰山一角—MXNet 同樣提供了對 R、Julia、C++、Scala、Matlab,和 Javascript 的介面。如果你正在尋找最佳的性能,選擇 MXNet 吧,但是你必須願意處理與之相對的一些 MXNet 的怪癖。
優點:
速度的標桿
非常靈活
缺點:
最小的社區
比 Theano 更困難的學習難度
PyTorch
描述:Python 中的張量(Tensors)和動態神經網路,有著強大的 GPU 加速。
概述:剛剛放出一段時間,PyTorch 就已經是我們 Python 深度學習框架列表中的一個新的成員了。它是從 Lua 的 Torch 庫到 Python 的鬆散埠,由於它由 Facebook 的 人工智慧研究團隊(Artificial Intelligence Research team (FAIR))支持且因為它用於處理動態計算圖(Theano,TensorFlow 或者其他衍生品沒有的特性,編譯者註:現在 TensorFlow 好像支持動態計算圖),它變得非常的有名。PyTorch 在 Python 深度學習生態系統將扮演怎樣的角色還不得而知,但所有的跡象都表明,PyTorch 是我們列表中其他框架的一個非常棒的選擇。
優點:
來自 Facebook 組織的支持
完全地對動態圖的支持
高級和低級 API 的混合
缺點:
比其他選擇,PyTorch 還不太成熟
G. PySyft是干什麼的
隱私保護的通用框架。
PySyft是用於安全和隱私深度學習的Python庫,它在主流深度學習框架。使用聯邦學習,例如多方計算MPC和同態加密HE。將隱私數據與模型訓練分離。
Pysyft可用於加密貨幣的,可保留隱私的深度學習的庫。它基於PyTorch。PyTorch是一個用於Python的開源機器學習庫。它基於Torch。它用於自然語言處理之類的應用程序。
H. 怎樣用python實現深度學習
基於Python的深度學習庫、深度學習方向、機器學習方向、自然語言處理方向的一些網站基本都是通過Python來實現的。
機器學習,尤其是現在火爆的深度學習,其工具框架大都提供了Python介面。Python在科學計算領域一直有著較好的聲譽,其簡潔清晰的語法以及豐富的計算工具,深受此領域開發者喜愛。
早在深度學習以及Tensorflow等框架流行之前,Python中即有scikit-learn,能夠很方便地完成幾乎所有機器學習模型,從經典數據集下載到構建模型只需要簡單的幾行代碼。配合Pandas、matplotlib等工具,能很簡單地進行調整。
而Tensorflow、PyTorch、MXNet、Keras等深度學習框架更是極大地拓展了機器學習的可能。使用Keras編寫一個手寫數字識別的深度學習網路僅僅需要寥寥數十行代碼,即可藉助底層實現,方便地調用包括GPU在內的大量資源完成工作。
值得一提的是,無論什麼框架,Python只是作為前端描述用的語言,實際計算則是通過底層的C/C++實現。由於Python能很方便地引入和使用C/C++項目和庫,從而實現功能和性能上的擴展,這樣的大規模計算中,讓開發者更關注邏輯於數據本身,而從內存分配等繁雜工作中解放出來,是Python被廣泛應用到機器學習領域的重要原因。
I. 2019年十大最佳深度學習框架
作者 | Python語音識別
來源 | 濤哥聊Python
雖然我們大多數人都驚嘆為什麼DL這么好?在使用大量數據進行訓練時,它在准確性方面非常出色。近幾年隨著深度學習演算法的發展,出現了很多深度學習的框架,這些框架各有所長,各具特色。下面將為大家介紹2019年最受歡迎的十大深度學習框架。
TensorFlow谷歌的Tensorflow可以說是當今最受歡迎的深度學習框架。Gmail,Uber,Airbnb,Nvidia以及其他許多知名品牌都在使用。TF是目前深度學習的主流框架,Tensorflow主要特性:
TensorFlow支持python、JavaScript、C ++、Java和Go,C#和Julia等多種編程語言。 TF不僅擁有強大的計算集群,還可以在iOS和Android等移動平台上運行模型。 TF編程入門難度較大。初學者需要仔細考慮神經網路的架構,正確評估輸入和輸出數據的維度和數量。 TF使用靜態計算圖進行操作 。也就是說我們需要先定義圖形,然後運行計算,如果我們需要對架構進行更改,我們會重新訓練模型。選擇這樣的方法是為了提高效率,但是許多現代神經網路工具能夠在學習過程中考慮改進而不會顯著降低學習速度。在這方面,TensorFlow的主要競爭對手是PyTorch 。TensorFlow優點:
它非常適合創建和試驗深度學習架構,便於數據集成,如輸入圖形,SQL表和圖像。 它得到谷歌的支持,這就說明該模型短期內不會被拋棄,因此值得投入時間來學習它。 PyTorchTensorflow之後用於深度學習的主要框架是PyTorch。PyTorch框架是Facebook開發的,已被Twitter和Salesforce等公司使用。
PyTorch基本特性:
與TensorFlow不同,PyTorch庫使用動態更新的圖形進行操作 。這意味著它可以在流程中更改體系結構。 在PyTorch中,您可以使用標准調試器 ,例如pdb或PyCharm。PyTorch優點:
訓練神經網路的過程簡單明了。同時,PyTorch支持數據並行和分布式學習模型,並且還包含許多預先訓練的模型。 PyTorch更適合小型項目和原型設計。 SonnetSonnet深度學習框架是建立在TensorFlow的基礎之上。它是DeepMind用於創建具有復雜架構的神經網路。
Sonnet基本特性:
面向對象的庫,在開發神經網路(NN)或其他機器學習(ML)演算法時更加抽象。 Sonnet的想法是構造對應於神經網路的特定部分的主要Python對象。此外,這些對象獨立地連接到計算TensorFlow圖。分離創建對象並將其與圖形相關聯的過程簡化了高級體系結構的設計。Sonnet優點:
Sonnet的主要優點是可以使用它來重現DeepMind論文中展示的研究,比Keras更容易,因為DeepMind論文模型就是使用Sonnet搭建的。 KerasKeras是一個機器學習框架,如果您擁有大量數據和/或你想快速入門深度學習,那麼Keras將非常適合學習。Keras是TensorFlow高級集成APi,可以非常方便的和TensorFlow進行融合。這是我強烈推薦學習的一個庫。
Keras基本特性:
除了Tensorflow之外,Keras還是其他流行的庫(如Theano和CNTK)的高級API。 在Keras中更容易創建大規模的深度學習模型,但Keras框架環境配置比其他底層框架要復雜一些。Keras優點:
對於剛剛入門的人來說,Keras是最好的深度學習框架。它是學習和原型化簡單概念的理想選擇,可以理解各種模型和學習過程的本質。 Keras是一個簡潔的API。 可以快速幫助您創建應用程序。 Keras中代碼更加可讀和簡潔。 Keras模型序列化/反序列化API,回調和使用Python生成器的數據流非常成熟。順便說一下TensorFlow和Keras的對比:
PS:Tensorflow處於底層框架:這和MXNet,Theano和PyTorch等框架一樣。包括實現諸如廣義矩陣 - 矩陣乘法和諸如卷積運算的神經網路原語之類的數學運算。
Keras處於高度集成框架。雖然更容易創建模型,但是面對復雜的網路結構時可能不如TensorFlow。
MXNetMXNet是一種高度可擴展的深度學習工具,可用於各種設備。雖然與TensorFlow相比,它似乎沒有被廣泛使用,但MXNet的增長可能會因為成為一個Apache項目而得到提升。
MXNet基本特性:
該框架支持多種語言,如C ++,Python,R,Julia,JavaScript,Scala,Go,甚至Perl。 可以在多個GPU和許多機器上非常有效地並行計算。MXNet優點:
支持多個GPU(具有優化的計算和快速上下文切換) 清晰且易於維護的代碼(Python,R,Scala和其他API) 快速解決問題的能力(對於像我這樣的深度學習新手至關重要)雖然它不像TF那麼受歡迎,但MXNet具有詳細的文檔並且易於使用,能夠在命令式和符號式編程風格之間進行選擇,使其成為初學者和經驗豐富的工程師的理想選擇。
GLUONGluon是一個更好的深度學習框架,可以用來創建復雜的模型。GLUON基本特性:
Gluon的特殊性是具有一個靈活的界面,簡化了原型設計,構建和培訓深度學習模型,而不會犧牲學習速度。 Gluon基於MXNet,提供簡單的API,簡化深度學習模型的創建。 與PyTorch類似,Gluon框架支持使用動態圖表 ,將其與高性能MXNet相結合。從這個角度來看,Gluon看起來像是分布式計算的Keras非常有趣的替代品。GLUON優點:
在Gluon中,您可以使用簡單,清晰和簡潔的代碼定義神經網路。 它將訓練演算法和神經網路模型結合在一起,從而在不犧牲性能的情況下提供開發過程的靈活性。 Gluon可以定義動態的神經網路模型,這意味著它們可以動態構建,使用任何結構,並使用Python的任何本機控制流。 SWIFT當你聽到Swift時,您可能會考慮iOS或MacOS的應用程序開發。但是如果你正在學習深度學習,那麼你一定聽說過Swens for Tensorflow。通過直接與通用編程語言集成,Swift for TensorFlow可以以前所未有的方式表達更強大的演算法。SWIFT基本特性:
可以輕松獲得可微分的自定義數據結構。 下一代API 。通過實踐和研究獲得的新API更易於使用且更強大。 在TensorFlow的基礎上 ,Swift API為您提供對所有底層TensorFlow運算符的直接調用。 基於Jupyter、LLDB或者Swift in Colab的編程工具提高了您的工作效率。SWIFT優點:
如果動態語言不適合您的任務,那麼這將是一個很好的選擇。當你訓練運行了幾個小時,然後你的程序遇到類型錯誤,那麼使用Swift,一種靜態類型語言。您將看到代碼錯誤的地方。 Chainer直到CMU的DyNet和Facebook的PyTorch出現之前,Chainer是動態計算圖或網路的領先神經網路框架,它允許輸入數據長度不一致。chainer基本特性:
Chainer代碼是在Numpy和CuPy庫的基礎之上用純Python編寫的, Chainer是第一個使用動態架構模型的框架。Chainer優點:
通過自己的基準測試,Chainer明顯比其他面向Python的框架更快,TensorFlow是包含MxNet和CNTK的測試組中最慢的。 比TensorFlow更好的GPU和GPU數據中心性能。最近Chainer成為GPU數據中心性能的全球冠軍。 DL4J那些使用Java或Scala的人應該注意DL4J(Deep Learning for Java的簡稱)。DL4J的基本特性:
DL4J中的神經網路訓練通過簇的迭代並行計算。 該過程由Hadoop和Spark架構支持。 使用Java允許您在Android設備的程序開發周期中使用。DL4J優點:
如果您正在尋找一個良好的Java深度學習框架,這會是一個非常好的平台。 ONNXONNX項目誕生於微軟和Facebook,旨在尋找深度學習模型呈現的開放格式。ONNX簡化了在人工智慧的不同工作方式之間傳遞模型的過程。因此ONNX具有各種深度學習框架的優點。
ONNX基本特性:
ONNX使模型能夠在一個框架中進行訓練並轉移到另一個框架中進行推理。ONNX模型目前在Caffe2,Microsoft Cognitive Toolkit,MXNet和PyTorch中得到支持,並且還有許多其他常見框架和庫的連接器。ONNX優點:
對於PyTorch開發人員來說,ONNX是一個好的選擇。但是對於那些喜歡TensorFlow的人來說,Keras等可能好一點。 總結那麼您應該使用哪種深度學習框架?下面是幾點建議:
如果你剛剛開始學習,那麼最好的選擇是Keras 。 出於研究目的,請選擇PyTorch 。 對於生產,您需要關注環境。因此對於Google Cloud,最好的選擇是TensorFlow ,適用於AWS - MXNet和Gluon 。 Android開發人員應該關注D4LJ ,對於iOS來說, Core ML會破壞類似的任務范圍。 最後, ONNX將幫助解決不同框架之間的交互問題。J. 《深度學習框架PyTorch:入門與實踐》epub下載在線閱讀,求百度網盤雲資源
《深度學習框架PyTorch:入門與實踐》(陳雲)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1H1PSIo3KOOWh87ZtyR4oKQ
書名:深度學習框架PyTorch:入門與實踐
作者:陳雲
豆瓣評分:6.7
出版社:電子工業出版社
出版年份:2018-1
頁數:300
內容簡介:
《深度學習框架PyTorch:入門與實踐》從多維數組Tensor開始,循序漸進地帶領讀者了解PyTorch各方面的基礎知識。結合基礎知識和前沿研究,帶領讀者從零開始完成幾個經典有趣的深度學習小項目,包括GAN生成動漫頭像、AI濾鏡、AI寫詩等。《深度學習框架PyTorch:入門與實踐》沒有簡單機械地介紹各個函數介面的使用,而是嘗試分門別類、循序漸進地向讀者介紹PyTorch的知識,希望讀者對PyTorch有一個完整的認識。
《深度學習框架PyTorch:入門與實踐》內容由淺入深,無論是深度學習的初學者,還是第一次接觸PyTorch的研究人員,都能在學習本書的過程中快速掌握PyTorch。即使是有一定PyTorch使用經驗的用戶,也能夠從本書中獲得對PyTorch不一樣的理解。
作者簡介:
陳雲
Python程序員、Linux愛好者和PyTorch源碼貢獻者。主要研究方向包括計算機視覺和機器學習。「2017知乎看山杯機器學習挑戰賽」一等獎,「2017天池醫療AI大賽」第八名。 熱衷於推廣PyTorch,並有豐富的使用經驗,活躍於PyTorch論壇和知乎相關板塊。