opencvpython輪廓
Ⅰ 請教基於opencv的輪廓提取問題
先灰度化->二值化,弄成二值圖,你就會提取了
給你個例子
C/C++ code
#include <stdio.h>
#include "cv.h"
#include "cxcore.h"
#include "highgui.h"
#include <iostream>
using namespace std;
#pragma comment(lib,"cv.lib")
#pragma comment(lib,"cxcore.lib")
#pragma comment(lib,"highgui.lib")
struct Position
{
int x,y;
};
double per[256];// 保存灰度概率
IplImage *FindCountours(IplImage* src,IplImage *pContourImg);
int ImageStretchByHistogram(IplImage *src,IplImage *dst);
IplImage* Hist_Equalization(IplImage *srcimg);
void proBorder(IplImage *src); // 邊界的處理
void GetBackImage(IplImage* src,IplImage* src_back);
void Threshold(IplImage *src);
int GetThreshold(double *const prob);
void Getprobability(IplImage *src);
double Eccentricity(IplImage *src);
void main()
{
//IplImage * src = cvLoadImage("C:\\image19\\A634.jpg",-1);//灰度圖的方式載入
IplImage * src = cvLoadImage("C:\\image19\\A857.jpg",-1);
IplImage * dst = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,3);
IplImage *src_back = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,src->nChannels);
GetBackImage(src,src_back);
dst = FindCountours(src_back,dst);
cvNamedWindow("test",CV_WINDOW_AUTOSIZE);
cvShowImage("test",dst);
cvWaitKey(0);
cvReleaseImage(&src);
cvReleaseImage(&dst);
}
void GetBackImage(IplImage* src,IplImage* src_back)
{
//cvCvtColor(src,src,CV_RGB2GRAY);//灰度化
IplImage *tmp = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,3);
// 創建結構元素
IplConvKernel *element = cvCreateStructuringElementEx( 2, 2, 0, 0, CV_SHAPE_ELLIPSE,0);
//用該結構對源圖象進行數學形態學的開操作後,估計背景亮度
cvErode(src,tmp,element,9);
//使用任意結構元素腐蝕圖像
cvDilate(tmp,src_back, element,9);
//使用任意結構元素膨脹圖像
}
IplImage *FindCountours(IplImage* src,IplImage *pContourImg)
{
CvMemStorage *storage = cvCreateMemStorage(0); //提取輪廓需要的儲存容量為默認KB
CvSeq * pcontour = 0; //提取輪廓的序列指針
IplImage *temp = cvCreateImage(cvGetSize(src),src->depth,1);
//cvSmooth(src,temp,CV_GAUSSIAN,3,1,0);
cvSmooth(src,src,CV_GAUSSIAN,3,1,0);//平滑處理
cvCvtColor(src,temp,CV_RGB2GRAY);//灰度化
Getprobability(temp);
printf("最好的閾值:%d\n",GetThreshold(per));
//Threshold(temp);
proBorder(temp);
cvThreshold(temp,temp,GetThreshold(per),255,CV_THRESH_BINARY_INV);
int contoursNum = 0; // 輪廓數量
//int mode = CV_RETR_LIST;
int mode = CV_RETR_EXTERNAL;// 提取最外層輪廓
contoursNum = cvFindContours(temp,storage,&pcontour,sizeof(CvContour),mode,CV_CHAIN_APPROX_NONE);
// contoursNum = cvFindContours(temp,storage,&pcontour,sizeof(CvContour),CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0));
//二值圖, 得到輪廓存儲,輪廓指針序列,header_size,提取模式,逼近方法
CvScalar externalColor;// 保存顏色值
CvScalar holeColor;
//————–畫輪廓—————-//
for (; pcontour != 0; pcontour=pcontour -> h_next)
{
//holeColor=CV_RGB(rand()&255,rand()&255,rand()&255);
//externalColor=CV_RGB(rand()&255,rand()&255,rand()&255);
CvRect r = ((CvContour *)pcontour)->rect;
if(r.height * r.width < 800)
{
holeColor=CV_RGB(0,0,0);
externalColor=CV_RGB(0,0,0);
cvDrawContours(pContourImg,pcontour,externalColor,holeColor,1,1,8);
}
else
{
//取得輪廓面積
double contArea = fabs(cvContourArea(pcontour,CV_WHOLE_SEQ));
//取得輪廓長度
double contLenth = cvArcLength(pcontour,CV_WHOLE_SEQ,-1);
// 圓形度
double contcircularity = contLenth * contLenth / contArea;
double pxl =Eccentricity(temp);
cout<<"面積為:"<<contArea<<endl;
cout<<"周長為:"<<contLenth<<endl;
cout<<"圓形度為:"<<contcircularity<<endl;
holeColor=CV_RGB(255,255,255);
externalColor=CV_RGB(255,255,255);
cvDrawContours(pContourImg,pcontour,externalColor,holeColor,1,1,8);
}
}
//IplConvKernel *element = cvCreateStructuringElementEx( 2, 2, 0, 0, CV_SHAPE_ELLIPSE,0);
//cvDilate(pContourImg,pContourImg, element,9);
return pContourImg;
}
double Eccentricity(IplImage *src)//偏心率
{
Position pos[4];
int width = src->width;
int height = src->height;
int i,j;
for(i = 0; i < height; i++)
{
for(j = 0; j < width; j++)
{
int pixel = (int)cvGet2D(src,i,j).val[0];
if(pixel != 0)
{
pos[0].x = j;
pos[0].y = i;//
goto s;
}
}
}
s:
for(i = height – 1; i >= 0; i–)
{
for(j = 0; j < width ; j++)
{
int pixel = (int)cvGet2D(src,i,j).val[0];
if(pixel != 0)
{
pos[1].x = j;
pos[1].y = i;//
goto w;
}
}
}
w:
for(i = 0 ; i < width ; i++)
{
for(j = 0;j < height; j++)
{
int pixel = (int)cvGet2D(src,j,i).val[0];
if(pixel != 0)
{
pos[2].x = j;//
pos[2].y = i;
goto e;
}
}
}
e:
for(i = width – 1; i >= 0; i–)
{
for(j = 0 ; j < height ; j++)
{
int pixel = (int)cvGet2D(src,j,i).val[0];
if(pixel != 0)
{
pos[3].x = j;//
pos[3].y = i;
goto f;
}
}
}
f:
int l_dis = abs(pos[0].y – pos[1].y);
int s_dis = abs(pos[2].x – pos[3].x);
int tmp_dis;
if(l_dis > s_dis)
{
printf("偏心率:%f\n",l_dis*1.0/s_dis);
}
else
{
tmp_dis = l_dis;
l_dis = s_dis;
s_dis = tmp_dis;
printf("偏心率:%f\n",l_dis*1.0/s_dis);
}
return 0;
}
void Getprobability(IplImage *src)
{
memset(per,0,sizeof(per));
int width = src->width;
int height = src->height;
for(int i = 0; i < height; i++) {
for(int j = 0; j < width; j++) {
per[(int)cvGet2D(src,i,j).val[0]]++;
}
}
int PixlNum = width * height;
for(i = 0; i < 256; i++)
per[i] = per[i] / PixlNum;
}
int GetThreshold(double *const prob)
{
int threshold = 0;
double maxf = 0;
for (int crrctThrshld = 1; crrctThrshld < 256 – 1; ++crrctThrshld) {
double W0 = 0, W1 = 0, U0 = 0, U1 = 0;
int i = 0;
for (i = 0; i <= crrctThrshld; ++i) {
U0 += i * prob[i];
W0 += prob[i];
}
for (; i < 256; ++i) {
U1 += i * prob[i];
W1 += prob[i];
}
if (W1 == 0 || W1 == 0)
continue;
U0 /= W0;
U1 /= W1;
double D0 = 0, D1= 0;
for (i = 0; i <= crrctThrshld; ++i)
D0 += pow((i – U0) * prob[i], 2.0);
for (; i < 256; ++i)
D1 += pow((i – U1) * prob[i], 2.0);
D0 /= W0;
D1 /= W1;
double Dw = pow(D0, 2.0) * W0 + pow(D1, 2.0) * W1;
double Db = W0 * W1 * pow((U1 – U0), 2.0);
double f = Db / (Db + Dw);
if (maxf < f) {
maxf = f;
threshold = crrctThrshld;
}
}
return threshold;
}
void proBorder(IplImage *src) // 邊界的處理
{
int i,j;
int height = src->height;
int width = src->width;
int N = 100;
for(i = 0; i < N * width; i += width) // i表示向下走左上角
{
for(j = 0; j < N ; j++)
{
int index = i + j;
src->imageData[index] = (char)255;
}
}
int NN = 150;
int sw = width * (height – NN);// 左下角 三角形
int t = 1;
for(i = sw; i < sw + NN * width; i += width,t++)
{
for(j = 0; j < t; j++)
{
int index = i + j;
src->imageData[index] = (char)255;
}
}
int se = (height – NN – 1) * width; // 右下角
t = 0;
for(i = se; i < width * height ; i += width,t++)
{
for(j = 0; j < t; j++)
{
int index = i + j – t;
src->imageData[index] = (char)255;
}
}
int ne = width – NN; // 右上角 三角形剪切
t = 0;
for(i = ne; i < NN * width; i +=width,t++)
{
for(j = 0; j < NN – t; j++)
{
int index = i + j + t;
src->imageData[index] = (char)255;
}
}
}
void Threshold(IplImage *src)
{
int width = src->width;
int height = src->height;
float minpixel = cvGet2D(src,0,0).val[0];
float maxpixel = cvGet2D(src,0,0).val[0];
CvScalar s;
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
s = cvGet2D(src,i,j);
if(s.val[0] > maxpixel)
maxpixel = s.val[0];
if(s.val[0] < minpixel)
minpixel = s.val[0];
}
}
float firstgrey = (maxpixel + minpixel) / 2;
printf("%f\n",firstgrey);
float lastgrey;
float sum1 = 0,sum2 = 0;
int num1 = 0,num2 = 0;
int result = 0;
Ⅱ OpenCV相關問題:可以用輪廓圖和原圖得出用輪廓裁剪出來的圖像嗎
不可以。
opencv只提供了裁剪出矩形的方法。
其實有一個很笨的方法,你把原圖改成RGBA格式,確定輪廓圖的位置,遍歷原圖的像素點,判斷像素點不在輪廓內的時候把該像素值修改為(0,0,0,0),遍歷結束之後圖片保存為png格式,不知道這樣可不可以滿足你的需求,就是效率很低。
Ⅲ opencv和python的區別
Python是著名的「龜叔」Guido van
Rossum在1989年聖誕節期間,為了打發無聊的聖誕節而編寫的一個編程語言,那麼opencv和python的區別是什麼呢?下面我們就來具體了解一下opencv和python
Ⅳ opencv python 圖像處理
contours是一個輪廓的列表,取0就是隨機的,你也可以取別的,只要裡面有元素
Ⅳ 關於OPENCV輪廓的問題。
挨個挨個點做下面的運算就能得到了,不需要openCV的庫函數:
黑 黑=白
白 黑=黑
白 白=白
Ⅵ 如何利用OPENCV的matchShapes進行輪廓匹配
主要步驟1.讀取一幅圖片,並且對其進行二值化。2.對其進行形態學處理,減少孔洞等次要特徵,保留其主要特徵。3.進行邊緣提取。4.進行形狀輪廓匹配,得到其匹配值,從而判斷是否是同一個形狀。
下面是演示代碼:
#include <iostream>
#include "opencv2/opencv.hpp"
using namespace std;
using namespace cv;
int main()
{
Mat k=imread("E:/TestGit/8.jpg",0);
Mat f;
Mat k1=imread("E:/TestGit/9.jpg",0);
Mat f1;
threshold(k,f,50,255,THRESH_BINARY);//對圖像進行二值化
threshold(k1,f1,50,255,THRESH_BINARY);
Mat closerect=getStructuringElement(MORPH_RECT,Size(3,3)); //進行結構運算元生成
morphologyEx(f,f,MORPH_OPEN,closerect);
morphologyEx(f1,f1,MORPH_OPEN,closerect);//進行形態學開運算
Mat dst = Mat::zeros(k.rows, k.cols, CV_8UC3);
Mat dst1 = Mat::zeros(k1.rows, k1.cols, CV_8UC3);
vector<vector<Point>> w,w1;
vector<Vec4i> hierarchy,hierarchy1 ;
findContours(f,w,hierarchy,RETR_CCOMP,CHAIN_APPROX_SIMPLE);//提取輪廓元素
findContours(f1,w1,hierarchy1,RETR_CCOMP,CHAIN_APPROX_SIMPLE);
FileStorage fs("f.dat",FileStorage::WRITE);
fs<<"f"<<w1[0];
int idx=0;
double ffff=matchShapes(w[0],w1[0],CV_CONTOURS_MATCH_I3,1.0);//進行輪廓匹配
std::cout<<ffff<<std::endl;
system("pause");
return 0;
}
這樣,我們就得到了輪廓邊緣的提取和匹配,滿足了需要。而不同的運算元具有不同的匹配運算元方法。
Ⅶ opencv中提取的輪廓怎麼用
那要看你怎麼提取了,有個cvfindcontours的函數你可以看一下,提取輪廓保存在cvseq結構中,然後每次取出header,並把指針指向next直到為空即可
Ⅷ 怎麼用opencv和python,只保留深藍色部分,其他區域變為黑色
不會OpenCV,有錯別怪
1. cv::blur 以 2*2 進行平滑
2. 以 ( (B>R && B>G) || (R>253&&G>253&&B>253) ) 為條件二值化
3. cv::dilate 以 7*7 的圓進行膨脹
4. cv::findContours找輪廓,並挑出面積(cv::contourArea)最大的輪廓
5. 在原圖上畫出(cv::drawContours)這個輪廓
Ⅸ opencv 填充大致輪廓
這人形輪廓沒有統一到一個輪廓下呀,opencv只能對單個輪廓進行填充,函數為cvDrawContours
( img, c, cvScalar(0,255,0,0),cvScalar(255,0,0,0), -1,2, 8, cvPoint(0, 0) );