python語法分析
① python語法分析問題,這是什麼問題,怎麼改啊
沒有用過nltk這個機器學習的庫。不過從語法解析上看。你的格式不對。
我略略查了一下,它的語法應該是這樣子
S->'NP'|'VP'
PP->'P'|'NP'
你修改一下看看。另外它的noterminals似乎是一個特殊含義。不是種換行符。下面是一個較完整的示例
-
def cfg_demo():
"""
A demonstration showing how C{ContextFreeGrammar}s can be created and used.
"""
from nltk import nonterminals, Proction, parse_cfg
# Create some nonterminals
S, NP, VP, PP = nonterminals('S, NP, VP, PP')
N, V, P, Det = nonterminals('N, V, P, Det')
VP_slash_NP = VP/NP
print 'Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP]
print ' S.symbol() =>', `S.symbol()`
print
print Proction(S, [NP])
# Create some Grammar Proctions
grammar = parse_cfg("""
S -> NP VP
PP -> P NP
NP -> Det N | NP PP
VP -> V NP | VP PP
Det -> 'a' | 'the'
N -> 'dog' | 'cat'
V -> 'chased' | 'sat'
P -> 'on' | 'in'
""")
print 'A Grammar:', `grammar`
print ' grammar.start() =>', `grammar.start()`
print ' grammar.proctions() =>',
# Use string.replace(...) is to line-wrap the output.
print `grammar.proctions()`.replace(',', ',
'+' '*25)
print
print 'Coverage of input words by a grammar:'
-
def cfg_demo():
"""
A demonstration showing how C{ContextFreeGrammar}s can be created and used.
"""
from nltk import nonterminals, Proction, parse_cfg
# Create some nonterminals
S, NP, VP, PP = nonterminals('S, NP, VP, PP')
N, V, P, Det = nonterminals('N, V, P, Det')
VP_slash_NP = VP/NP
print 'Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP]
print ' S.symbol() =>', `S.symbol()`
print Proction(S, [NP])
# Create some Grammar Proctions
grammar = parse_cfg("""
S -> NP VP
PP -> P NP
NP -> Det N | NP PP
VP -> V NP | VP PP
Det -> 'a' | 'the'
N -> 'dog' | 'cat'
V -> 'chased' | 'sat'
P -> 'on' | 'in'
""")
print 'A Grammar:', `grammar`
print ' grammar.start() =>', `grammar.start()`
print ' grammar.proctions() =>',
# Use string.replace(...) is to line-wrap the output.
print `grammar.proctions()`.replace(',', ', '+' '*25)
print 'Coverage of input words by a grammar:'
-
from nltk import nonterminals, Proction, parse_cfg # Create some nonterminals S, NP, VP, PP = nonterminals('S, NP, VP, PP') N, V, P, Det = nonterminals('N, V, P, Det') VP_slash_NP = VP/NP print 'Some nonterminals:', [S, NP, VP, PP, N, V, P, Det, VP/NP] print ' S.symbol() =>', `S.symbol()` print print Proction(S, [NP]) # Create some Grammar Proctions grammar = parse_cfg(""" S -> NP VP PP -> P NP NP -> Det N | NP PP VP -> V NP | VP PP Det -> 'a' | 'the' N -> 'dog' | 'cat' V -> 'chased' | 'sat' P -> 'on' | 'in' """) print 'A Grammar:', `grammar` print ' grammar.start() =>', `grammar.start()` print ' grammar.proctions() =>', # Use string.replace(...) is to line-wrap the output. print `grammar.proctions()`.replace(',', ', '+' '*25) print print 'Coverage of input words by a grammar:' print grammar.covers(['a','dog']) print grammar.covers(['a','toy']) toy_pcfg1 = parse_pcfg(""" S -> NP VP [1.0] NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15] Det -> 'the' [0.8] | 'my' [0.2] N -> 'man' [0.5] | 'telescope' [0.5] VP -> VP PP [0.1] | V NP [0.7] | V [0.2] V -> 'ate' [0.35] | 'saw' [0.65] PP -> P NP [1.0] P -> 'with' [0.61] | 'under' [0.39] """) toy_pcfg2 = parse_pcfg(""" S -> NP VP [1.0] VP -> V NP [.59] VP -> V [.40] VP -> VP PP [.01] NP -> Det N [.41] NP -> Name [.28] NP -> NP PP [.31] PP -> P NP [1.0] V -> 'saw' [.21] V -> 'ate' [.51] V -> 'ran' [.28] N -> 'boy' [.11] N -> 'cookie' [.12] N -> 'table' [.13] N -> 'telescope' [.14] N -> 'hill' [.5] Name -> 'Jack' [.52] Name -> 'Bob' [.48] P -> 'with' [.61] P -> 'under' [.39] Det -> 'the' [.41] Det -> 'a' [.31] Det -> 'my' [.28] """)
② 為什麼用Python做數據分析
為什麼用Python做數據分析
原因如下:
1、python大量的庫為數據分析提供了完整的工具集
python擁有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科學計算方面十分有優勢,尤其是pandas,在處理中型數據方面可以說有著無與倫比的優勢,已經成為數據分析中流砥柱的分析工具。
2、比起MATLAB、R語言等其他主要用於數據分析語言,python語言功能更加健全
Python具有強大的編程能力,這種編程語言不同於R或者matlab,python有些非常強大的數據分析能力,並且還可以利用Python進行爬蟲,寫游戲,以及自動化運維,在這些領域中有著很廣泛的應用,這些優點就使得一種技術去解決所有的業務服務問題,這就充分的體現的Python有利於各個業務之間的融合。如果使用Python,能夠大大的提高數據分析的效率。
3、python庫一直在增加,演算法的實現採取的方法更加創新
4、python能很方便的對接其他語言,比如c、java等。
Python最大的優點那就是簡單易學。Python代碼十分容易被讀寫,最適合剛剛入門的朋友去學習。我們在處理數據的時候,一般都希望數據能夠轉化成可運算的數字形式,這樣,不管是沒學過編程的人還是學過編程的人都能夠看懂這個數據。
其實現如今,Python是一個面向世界的編程語言,Python對於如今火熱的人工智慧也有一定的幫助,這是因為人工智慧需要的是即時性,而Python是一種非常簡潔的語言,同時有著豐富的資料庫以及活躍的社區,這樣就能夠輕松的提取數據,從而為人工智慧做出優質的服務。
通過上面的描述,相信大家已經知道了使用Python做數據分析的優點了。Python語言得益於它的簡單方便,使得其在大數據、數據分析以及人工智慧方面都有十分明顯的存在感,對於數據分析從業者以及想要進入數據分析行業的人來說,簡單易學容易上手的優勢也是一個優勢,所以不管大家是否進入數據分析行業,學習Python是沒有壞處的。
Python中文網,大量Python視頻教程,歡迎學習!
③ Python函數代碼分析題
1、show_category
2、有,有return。
3、break;
4、字典中category鍵的所有的菜。
5、同4一樣通過鍵返回菜名。
6、載入整個已點的菜,listmenu是列表。
④ 利用python實現數據分析
鏈接:
煉數成金:Python數據分析。Python是一種面向對象、直譯式計算機程序設計語言。也是一種功能強大而完善的通用型語言,已經具有十多年的發展歷史,成熟且穩定。Python 具有腳本語言中最豐富和強大的類庫,足以支持絕大多數日常應用。 Python語法簡捷而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,它能夠很輕松的把用其他語言製作的各種模塊(尤其是C/C++)輕松地聯結在一起。
課程將從Python的基本使用方法開始,一步步講解,從ETL到各種數據分析方法的使用,並結合實例,讓學員能從中借鑒學習。
課程目錄:
Python基礎
Python的概覽——Python的基本介紹、安裝與基本語法、變數類型與運算符
了解Python流程式控制制——條件、循環語句與其他語句
常用函數——函數的定義與使用方法、主要內置函數的介紹
.....
⑤ python3有什麼比較好的語法分析器
Pycharm, Eclipse,Ipython,其實自帶的IDLE shell也可以設置的
⑥ python語法錯誤
這個應該是字典類型吧,要用大括弧{}
⑦ python函數原型定義那行有個箭頭是什麼語法比如
deff(a)->List[dict]:
print(a)
return[a]
這個不是python語法,-> List[dict]: 這其實是一個注釋,告訴你這個函數返回一個由字典組成的list
⑧ Python語法問題
根據經驗分析,有可能是縮進問題。因為沒看到你的具體報錯,我猜測的。
Python自帶的idle不太好用,對於縮進有問題有時軟體顯示不出來,推薦你換個Python編輯器,比如Pycharm或spyder。這些可以看清縮進,避免縮進問題報錯。
若不是由於縮進,可以仔細看看一下報錯怎麼說的,再進一步分析。
⑨ python數據分析怎麼使用,都需要學習什麼技術
Python是一種面向對象、直譯式計算機程序設計語言,由Guido van Rossum於1989年底發明。由於他簡單、易學、免費開源、可移植性、可擴展性等特點,Python又被稱之為膠水語言。下圖為主要程序語言近年來的流行趨勢,Python受歡迎程度扶搖直上。
Python數據分析,主要需要學習以下內容:
1、Python語法基礎
2、Python數據分析擴展包:Numpy、Pandas、Matplotlib等
3、Python爬蟲基礎(非必須,但可以提升興趣)
4、Python數據探索及預處理
5、Python機器學習
python的下載和安裝環境:難點主要是在環境的安裝上,很多小白往往一腔熱血但是面對環境安裝的時候就泄了氣,因為我會用Anaconda為例進行環境的安裝,同時我建議初學者不要下載具有IDE功能的集成開發環境,比如Eclipse插件等。
數據類型:python的數據類型比較簡單,基本上就可以分為兩大類——數值和字元串。
數值:數值是python最基礎的數據類型,也是我們賦值給變數時最常用的形式,主要包括整型、布爾型等。
字元串:也就是文本數據,在python中一般用引號來定義,可以通過python進行拼接和重疊,實現文本數據的處理;
索引和切片:索引是有序列每個子元素在序列的位置,切片就是對序列的部分截取。
列表:用中括弧表示,可以容納任何對象元素,包括字元串,而且每個元素都可以變化;
元組:其實就是一個固定的列表,初始化元素的值是絕對不能變化的;
字典:可以理解為現實的字典,通過查找拼音(鍵)就能找到這個讀音的所有字(數值);中
集合:數學上的概念,每個集合中的元素是無序的,不可重復的對象;
數據結構:python的數據結構可以分為四種,列表、元組、字典、集合。
數據分析的目的是從數據里找規律,因此想要掌握python必須要學習一些基礎的數理理論,這是成為一個數據分析師必備的能力。對於python來說,其涉及的數理統計學基礎主要由演算法、統計學、概率論等
sql是python的基礎,如果你已經掌握了SQL,那麼這一章你就可以直接跳過,那麼你就要好好學習這部分的內容,因為sql是入門python的關鍵基礎,同時它也是每個數據分析師必備的技能,主要目的是用sql來進行增刪改查等操作,對數據進行篩選。
以上的回答希望對你有所幫助
⑩ 如何用bison和flex寫python的語法分析器和詞法分析
這個通用的數據結構,實際上是作為web服務層(這一層大家可以認為是類似於PHP伺服器或webpy的伺服器容器)