當前位置:首頁 » 編程語言 » python計算庫

python計算庫

發布時間: 2022-03-01 20:20:26

『壹』 python科學計算常用的工具包有哪些

1、 NumPy


NumPy幾乎是一個無法迴避的科學計算工具包,最常用的也許是它的N維數組對象,其他還包括一些成熟的函數庫,用於整合C/C++和Fortran代碼的工具包,線性代數、傅里葉變換和隨機數生成函數等。NumPy提供了兩種基本的對象:ndarray(N-dimensional array object)和 ufunc(universal function object)。ndarray是存儲單一數據類型的多維數組,而ufunc則是能夠對數組進行處理的函數。


2、SciPy:Scientific Computing Tools for Python


“SciPy是一個開源的Python演算法庫和數學工具包,SciPy包含的模塊有最優化、線性代數、積分、插值、特殊函數、快速傅里葉變換、信號處理和圖像處理、常微分方程求解和其他科學與工程中常用的計算。其功能與軟體MATLAB、Scilab和GNU Octave類似。 Numpy和Scipy常常結合著使用,Python大多數機器學習庫都依賴於這兩個模塊。”—-引用自“Python機器學習庫”


3、 Matplotlib


matplotlib 是python最著名的繪圖庫,它提供了一整套和matlab相似的命令API,十分適合互動式地進行制圖。而且也可以方便地將它作為繪圖控制項,嵌入GUI應用程序中。Matplotlib可以配合ipython shell使用,提供不亞於Matlab的繪圖體驗,總之用過了都說好。


關於Python科學計算常用的工具包有哪些,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。

『貳』 python數據分析需要哪些庫

1、Numpy
Numpy是Python科學計算的基礎包,它提供了很多功能:快速高效的多維數組對象ndarray、用於對數組執行元素級計算以及直接對數組執行數學運算的函數、用於讀寫硬碟上基於數組的數據集的工具、線性代數運算、傅里葉變換以及隨機數生成等。NumPy在數據分析方面還有另外一個主要作用,即作為在演算法和庫之間傳遞數據的容器。
2、Pandas
Pandas提供了快速便捷處理結構化數據的大量數據結構和函數。自從2010年出現以來,它助使Python成為強大而高效的數據分析環境。其中用得最多的Pandas對象是DataFrame,它是一個面向列的二維表結構,另一個是Series,一個一維的標簽化數組對象。Pandas兼具Numpy高性能的數組計算功能以及電子表格和關系型資料庫靈活的數據處理功能。還提供了復雜精細的索引功能,能更加便捷地完成重塑、切片和切塊、聚合以及選取數據子集等操作。
3、matplotlib
matplotlib是最流行的用於繪制圖表和其他二維數據可視化的Python庫。它最初由John
D.Hunter(JDH)創建,目前由一個龐大的開發團隊維護。它非常適合創建出版物上用的圖表。雖然還有其他的Python可視化庫,但matplotlib應用最為廣泛。
4、SciPy
SciPy是一組專門解決科學計算中各種標准問題域的包的集合,它與Numpy結合使用,便形成了一個相當完備和成熟的計算平台,可以處理多種傳統的科學計算問題。
5、scikit-learn
2010年誕生以來,scikit-learn成為了Python通用機器學習工具包。它的子模塊包括:分類、回歸、聚類、降維、選型、預處理等。與pandas、statsmodels和IPython一起,scikit-learn對於Python成為高效數據科學編程語言起到了關鍵作用。
6、statsmodels
statsmodels是一個統計分析包,起源於斯坦福大學統計學教授,他設計了多種流行於R語言的回歸分析模型。Skipper Seabold和Josef
Perktold在2010年正式創建了statsmodels項目,隨後匯聚了大量的使用者和貢獻者。與scikit-learn比較,statsmodels包含經典統計學和經濟計量學的演算法。

『叄』 python做數據分析需要哪些庫

常用的科學計算庫:numpy,pandas
正則表達式庫:re

『肆』 如何快速優雅的使用python的科學計算庫

Python是一種強大的編程語言,其提供了很多用於科學計算的模塊,常見的包括numpy、scipy、pandas和matplotlib。要利用Python進行科學計算,就需要一一安裝所需的模塊,而這些模塊可能又依賴於其它的軟體包或庫,因而安裝和使用起來相對麻煩。幸好有人專門在做這一類事情,將科學計算所需要的模塊都編譯好,然後打包以發行版的形式供用戶使用,Anaconda就是其中一個常用的科學計算發行版。

我們從網站(鏈接1)下載的默認的Anaconda版本已經內置了很多庫(鏈接2),包括numpy等。

盡管Anaconda已經自帶了大量科學計算中的常用模塊,可以直接使用。有時需要安裝一些其他python模塊。比如:

conda

anaconda自帶了conda命令用於安裝與更新模塊,比如:

1 conda install scipy2 conda update scipy

安裝完我們需要的庫之後,如果我們採用隨Anaconda一起安裝的spyder作為開發環境,那麼本文就結束了o_o

事實上是,我一直在用pycharm作為python開發的IDE。寫本文之前的5個小時內我一直在嘗試各種不同方法讓我電腦里的pycharm可以成功安裝好numpy庫,瀏覽完各大中外網站介紹的方法後讓我意識到這是一個很煩的問題。採用包括但不限於pip命令、安裝相應的各種版本whl文件都因為各種各樣的原因失效。極其失望的我嘗試了安裝了Anaconda,在這個界面(鏈接3)我發現了

「How to set up an IDE to use Anaconda」

它裡面介紹了幾種軟體使用Anaconda的方法,包括Pycharm。

  • Spyder

  • Python Tools for Visual Studio (PTVS)

  • PyCharm

  • Eclipse & PyDev

  • Wing IDE

  • Ninja IDE

  • 因此,配置完pycharm調用Anaconda後,我們在可以快樂的在pycharm裡面調用各種科學計算庫啦。

    具體步驟如下:

    1.安裝Anaconda

    2.安裝Pycharm

    3.在Pycharm的Files>>settings>>Project Interpreter>>Add local 裡面添加Anaconda python.exe. 應用之後就可以調用各種Anaconda的庫啦。

    有點曲線救國的味道

『伍』 Python可用於數學計算的第三方函數庫除了Python還有什麼,可否舉例說明

numpy, pandas之類

『陸』 python標准庫math中用來計算平方根的函數是

sqrt()
使用前需要導入math庫
也可以不用庫,直接0.5次方。如:a**0.5

『柒』 python的科學計算庫有哪些

1、Numpy庫簡介
在Python中很多高級庫都是基本Numpy科學庫去做的。之前如果用Python對數據進行操作,需要一行一行或者一個一個數據的去進行操作。而在Numpy中,則是封裝了一系列矩陣的操作:首先把數據轉換成一系列矩陣的格式,然後再對矩陣進行操作。這樣既高效,也省時。Numpy封裝了一系列的函數函數,方便我們去操作矩陣。Numpy中一行代碼就頂Python中十幾行的代碼。
2、Pandas庫簡介
在Pandas 是基於Numpy的一種工具,該工具是為了解決數據分析任務而創建的。Pandas
納入了大量庫和一些標準的數據模型,提供了高效地操作大型數據集所需的工具。Pandas提供了大量能使我們快速便捷地處理數據的函數和方法。你很快就會發現,它是使Python成為強大而高效的數據分析環境的重要因素之一。
3、Matplotlib庫簡介
Matplotlib 是一個 Python 的 2D繪圖庫,它以各種硬拷貝格式和跨平台的互動式環境生成出版質量級別的圖形,通過
Matplotlib,開發者可以僅需要幾行代碼,便可以生成繪圖,直方圖,功率譜,條形圖,錯誤圖,散點圖等。

『捌』 python有哪些庫

Arrow

Python中處理時間的庫有datetime,但是它過於簡單,使用起來不夠方便和智能,而Arrow可以說非常的方便和智能。它可以輕松地定位幾個小時之前的時間,可以輕松轉換時區時間,對於一個小時前,2個小時之內這樣人性化的信息也能夠准確解讀。

Behold

調試程序是每個程序員必備的技能,對於腳本語言,很多人習慣於使用print進行調試,然而對於大項目來說,print的功能還遠遠不足,我們希望有一個可以輕松使用,調試方便,對變數監視完整,格式已於查看的工具,而behold就是那個非常好用的調試庫。

Click

現在幾乎所有的框架都有自己的命令行腳手架,python也不例外,那麼如何快速開發出屬於自己的命令行程序呢?答案就是使用python的click庫。click庫對命令行api進行了大量封裝,你可以輕松開發出屬於自己的CLI命令集。終端的顏色,環境變數信息,通過click都可以輕松進行獲取和改變。

Numba

如果你從事數學方面的分析和計算,那麼Numba一定是你必不可少的庫。NumPy通過將高速C庫包裝在Python介面中來工作,而Cython使用可選的類型將Python編譯為C以提高性能。但是Numba無疑是最方便的,因為它允許使用裝飾器選擇性地加速Python函數。

Matlibplot

做過數據分析,數據可視化的數學學生一定知道matlab這個軟體,這是一個收費的數學商用軟體,在Python中,Matlibplot就是為了實現這個軟體中功能開發的第三方Python庫。並且它完全是免費的,很多學校都是用它來進行數學教學和研究的。

Pillow

圖像處理是任何時候我們都需要關注的問題,平時我們看到很多PS中的神技,比如調整畫面顏色,飽和度,調整圖像尺寸,裁剪圖像等等,這些其實都可以通過Python簡單完成,而其中我們需要使用的庫就是Pillow。

pyqt5

Python是可以開發圖形界面程序的。而pyqt就是一款非常好用的第三方GUI庫,有了它,你可以輕松開發出跨平台的圖形應用程序,其中qtdesigner設計器,更是加速了我們開發圖形界面的速度。

Scrapy

Python被很多人知道都是因為它的爬蟲功能,而Python中說到爬蟲框架,人們公認最好的就Scrapy沒有之一。Scrapy可以說專門為爬蟲而生,它的設計思想,還有他的簡潔性,可以說至少再過幾年,也沒有能超過它的。

除了以上內容,比較常見的Python庫還包括Splinter、Pygame、PyInstaller、Openpyxl等,Python的庫多到你一身都學不完。

『玖』 最常用的幾個python庫

Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。

『拾』 Python的符號計算庫sympy和Matlab的符號計算工具箱哪個更強

Python的符號計算庫sympy和Matlab的符號計算工具箱哪個更強
Python很不錯,能滿足絕大方面的需求,比如數據預處理,格式轉換等等。對於這些計算資源要求不是很高的地方可以用純Python來做。如果遇到純 Python處理起來比較吃力的,可以混合c來加快效率,基於c的Python庫也有很多。
作為腳本語言,Python快速開發的優點其他答案都說了。 Python適合做數據挖掘的另一個原因是社區現在比較成熟,mloss上面發布的Python程序越來越多。最著名的就是scikit.learn了吧,幾乎涵蓋了機器學習中常用的演算法

熱點內容
羅布樂思賬號密碼手機號多少 發布:2025-01-11 18:00:55 瀏覽:401
在廣州什麼配置的車才能跑滴滴 發布:2025-01-11 18:00:52 瀏覽:891
安卓手機哪個生態好 發布:2025-01-11 17:56:01 瀏覽:272
資料庫數據的一致性 發布:2025-01-11 17:30:45 瀏覽:708
手機怎麼設置手勢安卓 發布:2025-01-11 17:15:54 瀏覽:965
威能壁掛爐解壓閥 發布:2025-01-11 17:15:53 瀏覽:560
突破伺服器ip限制 發布:2025-01-11 17:11:23 瀏覽:819
支付寶上傳憑證 發布:2025-01-11 17:10:29 瀏覽:877
怎麼打開行李箱的密碼鎖 發布:2025-01-11 17:09:51 瀏覽:594
蘋果怎麼刪除id賬號和密碼 發布:2025-01-11 17:09:50 瀏覽:785