java內存分配機制
1. java中什麼是內存泄露
一、Java內存回收機制
不論哪種語言的內存分配方式,都需要返回所分配內存的真實地址,也就是返回一個指針到內存塊的首地址。Java中對象是採用new或者反射的方法創建的,這些對象的創建都是在堆(Heap)中分配的,所有對象的回收都是由Java虛擬機通過垃圾回收機制完成的。GC為了能夠正確釋放對象,會監控每個對象的運行狀況,對他們的申請、引用、被引用、賦值等狀況進行監控,Java會使用有向圖的方法進行管理內存,實時監控對象是否可以達到,如果不可到達,則就將其回收,這樣也可以消除引用循環的問題。在Java語言中,判斷一個內存空間是否符合垃圾收集標准有兩個:一個是給對象賦予了空值null,以下再沒有調用過,另一個是給對象賦予了新值,這樣重新分配了內存空間。
二、Java內存泄露引起原因
首先,什麼是內存泄露?經常聽人談起內存泄露,但要問什麼是內存泄露,沒幾個說得清楚。內存泄露是指無用對象(不再使用的對象)持續佔有內存或無用對象的內存得不到及時釋放,從而造成的內存空間的浪費稱為內存泄露。內存泄露有時不嚴重且不易察覺,這樣開發者就不知道存在內存泄露,但有時也會很嚴重,會提示你Out of memory。
那麼,Java內存泄露根本原因是什麼呢?長生命周期的對象持有短生命周期對象的引用就很可能發生內存泄露,盡管短生命周期對象已經不再需要,但是因為長生命周期對象持有它的引用而導致不能被回收,這就是java中內存泄露的發生場景。具體主要有如下幾大類:
1、靜態集合類引起內存泄露:
像HashMap、Vector等的使用最容易出現內存泄露,這些靜態變數的生命周期和應用程序一致,他們所引用的所有的對象Object也不能被釋放,因為他們也將一直被Vector等引用著。
例:
Static Vector v = new Vector(10);
for (int i = 1; i<100; i++)
{
Object o = new Object();
v.add(o);
o = null;
}//
在這個例子中,循環申請Object 對象,並將所申請的對象放入一個Vector 中,如果僅僅釋放引用本身(o=null),那麼Vector 仍然引用該對象,所以這個對象對GC 來說是不可回收的。因此,如果對象加入到Vector 後,還必須從Vector 中刪除,最簡單的方法就是將Vector對象設置為null。
2、當集合裡面的對象屬性被修改後,再調用remove()方法時不起作用。
例:
public static void main(String[] args)
{
Set<Person> set = new HashSet<Person>();
Person p1 = new Person("唐僧","pwd1",25);
Person p2 = new Person("孫悟空","pwd2",26);
Person p3 = new Person("豬八戒","pwd3",27);
set.add(p1);
set.add(p2);
set.add(p3);
System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:3 個元素!
p3.setAge(2); //修改p3的年齡,此時p3元素對應的hashcode值發生改變
set.remove(p3); //此時remove不掉,造成內存泄漏
set.add(p3); //重新添加,居然添加成功
System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:4 個元素!
for (Person person : set)
{
System.out.println(person);
}
}
3、監聽器
在java 編程中,我們都需要和監聽器打交道,通常一個應用當中會用到很多監聽器,我們會調用一個控制項的諸如addXXXListener()等方法來增加監聽器,但往往在釋放對象的時候卻沒有記住去刪除這些監聽器,從而增加了內存泄漏的機會。
4、各種連接
比如資料庫連接(dataSourse.getConnection()),網路連接(socket)和io連接,除非其顯式的調用了其close()方法將其連接關閉,否則是不會自動被GC 回收的。對於Resultset 和Statement 對象可以不進行顯式回收,但Connection 一定要顯式回收,因為Connection 在任何時候都無法自動回收,而Connection一旦回收,Resultset 和Statement 對象就會立即為NULL。但是如果使用連接池,情況就不一樣了,除了要顯式地關閉連接,還必須顯式地關閉Resultset Statement 對象(關閉其中一個,另外一個也會關閉),否則就會造成大量的Statement 對象無法釋放,從而引起內存泄漏。這種情況下一般都會在try裡面去的連接,在finally裡面釋放連接。
5、內部類和外部模塊等的引用
內部類的引用是比較容易遺忘的一種,而且一旦沒釋放可能導致一系列的後繼類對象沒有釋放。此外程序員還要小心外部模塊不經意的引用,例如程序員A 負責A 模塊,調用了B 模塊的一個方法如:
public void registerMsg(Object b);
這種調用就要非常小心了,傳入了一個對象,很可能模塊B就保持了對該對象的引用,這時候就需要注意模塊B 是否提供相應的操作去除引用。
6、單例模式
不正確使用單例模式是引起內存泄露的一個常見問題,單例對象在被初始化後將在JVM的整個生命周期中存在(以靜態變數的方式),如果單例對象持有外部對象的引用,那麼這個外部對象將不能被jvm正常回收,導致內存泄露,考慮下面的例子:
class A{
public A(){
B.getInstance().setA(this);
}
....
}
//B類採用單例模式
class B{
private A a;
private static B instance=new B();
public B(){}
public static B getInstance(){
return instance;
}
public void setA(A a){
this.a=a;
}
//getter...
}
顯然B採用singleton模式,它持有一個A對象的引用,而這個A類的對象將不能被回收。想像下如果A是個比較復雜的對象或者集合類型會發生什麼情況
2. java數組int [ ] array 是如何分配內存的,請用圖形說明
當你在代碼中只寫成int[] array;時,這意味著你已經聲明了一個int類型的數組,但尚未對其進行初始化。此時,array這個引用變數僅存在於內存的棧區中,但尚未指向內存堆區中的任何數組對象。請參見以下示意圖:
棧區
| array |
在棧區中,array作為一個引用變數存儲在棧底。當數組被初始化時,它將指向堆區中分配的內存空間。數組的初始化可以分為兩種類型:靜態初始化和動態初始化。
靜態初始化是指程序員自己為數組的每個元素賦值。例如,int[] array = new int[]{3, 5, 7}; 這就是靜態初始化的例子。在這個例子中,array指向了一個包含三個元素的數組,每個元素分別賦值為3、5和7。請參考以下示意圖:
堆區
| 3 | 5 | 7 |
棧區
| array |
動態初始化是指僅指定數組的長度,而元素的初始值由系統自動賦值。例如,int[] array = new int[3]; 這就是動態初始化的例子。在這種情況下,array指向一個包含三個元素的數組,每個元素的初始值為0。請參考以下示意圖:
堆區
| 0 | 0 | 0 |
棧區
| array |
對於float和double類型的數組,它們的初始值分別是0.0和0.0。而布爾類型數組的初始值為false。這些初始值在數組被動態初始化時自動賦予每個元素。請確保在實際編程中正確初始化數組,以避免出現未定義行為。