當前位置:首頁 » 編程語言 » sql連接原理

sql連接原理

發布時間: 2024-11-05 09:06:33

『壹』 sql語句執行流程與順序原理解析

SQL語句執行流程與順序原理解析
Oracle語句執行流程
第一步:客戶端把語句發給伺服器端執行
當我們在客戶端執行SQL語句時,客戶端會把這條SQL語句發送給伺服器端,讓伺服器端的進程來處理這語句。也就是說,Oracle 客戶端是不會做任何的操作,他的主要任務就是把客戶端產生的一些SQL語句發送給伺服器端。伺服器進程從用戶進程把信息接收到後, 在PGA 中就要此進程分配所需內存,存儲相關的信息,如:在會話內存存儲相關的登錄信息等。
雖然在客戶端也有一個資料庫進程,但是,這個進程的作用跟伺服器上的進程作用是不相同的,伺服器上的資料庫進程才會對SQL 語句進行相關的處理。不過,有個問題需要說明,就是客戶端的進程跟伺服器的進程是一一對應的。也就是說,在客戶端連接上伺服器後,在客戶端與伺服器端都會形成一個進程,客戶端上的我們叫做客戶端進程,而伺服器上的我們叫做伺服器進程。
第二步:語句解析
當客戶端把SQL語句傳送到伺服器後,伺服器進程會對該語句進行解析。這個解析的工作是在伺服器端所進行的,解析動作又可分為很多小動作。
1)查詢高速緩存(library cache)
伺服器進程在接到客戶端傳送過來的SQL語句時,不會直接去資料庫查詢。伺服器進程把這個SQL語句的字元轉化為ASCII等效數字碼,接著這個ASCII碼被傳遞給一個HASH函數,並返回一個hash值,然後伺服器進程將到shared pool中的library cache(高速緩存)中去查找是否存在相同的hash值。如果存在,伺服器進程將使用這條語句已高速緩存在SHARED POOL的library cache中的已分析過的版本來執行,省去後續的解析工作,這便是軟解析。若調整緩存中不存在,則需要進行後面的步驟,這便是硬解析。硬解析通常是昂貴的操作,大約占整個SQL執行的70%左右的時間,硬解析會生成執行樹,執行計劃,等等。
所以,採用高速數據緩存的話,可以提高SQL 語句的查詢效率。其原因有兩方面:一方面是從內存中讀取數據要比從硬碟中的數據文件中讀取數據效率要高,另一方面也是因為避免語句解析而節省了時間。
不過這里要注意一點,這個數據緩存跟有些客戶端軟體的數據緩存是兩碼事。有些客戶端軟體為了提高查詢效率,會在應用軟體的客戶端設置數據緩存。由於這些數據緩存的存在,可以提高客戶端應用軟體的查詢效率。但是,若其他人在伺服器進行了相關的修改,由於應用軟體數據緩存的存在,導致修改的數據不能及時反映到客戶端上。從這也可以看出,應用軟體的數據緩存跟資料庫伺服器的高速數據緩存不是一碼事。
2)語句合法性檢查(data dict cache)
當在高速緩存中找不到對應的SQL語句時,則伺服器進程就會開始檢查這條語句的合法性。這里主要是對SQL語句的語法進行檢查,看看其是否合乎語法規則。如果伺服器進程認為這條SQL語句不符合語法規則的時候,就會把這個錯誤信息反饋給客戶端。在這個語法檢查的過程中,不會對SQL語句中所包含的表名、列名等等進行檢查,只是檢查語法。
3)語言含義檢查(data dict cache)
若SQL 語句符合語法上的定義的話,則伺服器進程接下去會對語句中涉及的表、索引、視圖等對象進行解析,並對照數據字典檢查這些對象的名稱以及相關結構,看看這些欄位、表、視圖等是否在資料庫中。如果表名與列名不準確的話,則資料庫會就會反饋錯誤信息給客戶端。
所以,有時候我們寫select語句的時候,若語法與表名或者列名同時寫錯的話,則系統是先提示說語法錯誤,等到語法完全正確後再提示說列名或表名錯誤。
4)獲得對象解析鎖(control structer)
當語法、語義都正確後,系統就會對我們需要查詢的對象加鎖。這主要是為了保障數據的一致性,防止我們在查詢的過程中,其他用戶對這個對象的結構發生改變。
5)數據訪問許可權的核對(data dict cache)
當語法、語義通過檢查之後,客戶端還不一定能夠取得數據,伺服器進程還會檢查連接用戶是否有這個數據訪問的許可權。若用戶不具有數據訪問許可權的話,則客戶端就不能夠取得這些數據。要注意的是資料庫伺服器進程先檢查語法與語義,然後才會檢查訪問許可權。
6)確定最佳執行計劃
當語法與語義都沒有問題許可權也匹配,伺服器進程還是不會直接對資料庫文件進行查詢。伺服器進程會根據一定的規則,對這條語句進行優化。在執行計劃開發之前會有一步查詢轉換,如:視圖合並、子查詢解嵌套、謂語前推及物化視圖重寫查詢等。為了確定採用哪個執行計劃,Oracle還需要收集統計信息確定表的訪問聯結方法等,最終確定可能的最低成本的執行計劃。
不過要注意,這個優化是有限的。一般在應用軟體開發的過程中,需要對資料庫的sql語句進行優化,這個優化的作用要大大地大於伺服器進程的自我優化。
當伺服器進程的優化器確定這條查詢語句的最佳執行計劃後, 就會將這條SQL語句與執行計劃保存到數據高速緩存(library cache)。如此,等以後還有這個查詢時,就會省略以上的語法、語義與許可權檢查的步驟,而直接執行SQL語句,提高SQL語句處理效率。
第三步:綁定變數賦值
如果SQL語句中使用了綁定變數,掃描綁定變數的聲明,給綁定變數賦值,將變數值帶入執行計劃。若在解析的第一個步驟,SQL在高速緩沖中存在,則直接跳到該步驟。
第四步:語句執行
語句解析只是對SQL語句的語法進行解析,以確保伺服器能夠知道這條語句到底表達的是什麼意思。等到語句解析完成之後,資料庫伺服器進程才會真正的執行這條SQL語句。
對於SELECT語句:
1)首先伺服器進程要判斷所需數據是否在db buffer存在,如果存在且可用,則直接獲取該數據而不是從資料庫文件中去查詢數據,同時根據LRU 演算法增加其訪問計數;
2)若數據不在緩沖區中,則伺服器進程將從資料庫文件中查詢相關數據,並把這些數據放入到數據緩沖區中(buffer cache)。
其中,若數據存在於db buffer,其可用性檢查方式為:查看db buffer塊的頭部是否有事務,如果有事務,則從回滾段中讀取數據;如果沒有事務,則比較select的scn和db buffer塊頭部的scn,如果前者小於後者,仍然要從回滾段中讀取數據;如果前者大於後者,說明這是一非臟緩存,可以直接讀取這個db buffer塊的中內容。
對於DML語句(insert、delete、update):
1)檢查所需的資料庫是否已經被讀取到緩沖區緩存中。如果已經存在緩沖區緩存,則直接執行步驟3;
2)若所需的資料庫並不在緩沖區緩存中,則伺服器將數據塊從數據文件讀取到緩沖區緩存中;
3)對想要修改的表取得的數據行鎖定(Row Exclusive Lock),之後對所需要修改的數據行取得獨占鎖;
4)將數據的Redo記錄復制到redo log buffer;
5)產生數據修改的undo數據;
6)修改db buffer;
7)dbwr將修改寫入數據文件;
其中,第2步,伺服器將數據從數據文件讀取到db buffer經經歷以下步驟:
1)首先伺服器進程將在表頭部請求TM鎖(保證此事務執行過程其他用戶不能修改表的結構),如果成功加TM鎖,再請求一些行級鎖(TX鎖),如果TM、TX鎖都成功加鎖,那麼才開始從數據文件讀數據。
2)在讀數據之前,要先為讀取的文件准備好buffer空間。伺服器進程需要掃描LRU list尋找free db buffer,掃描的過程中,伺服器進程會把發現的所有已經被修改過的db buffer注冊到dirty list中。如果free db buffer及非臟數據塊緩沖區不足時,會觸發dbwr將dirty buffer中指向的緩沖塊寫入數據文件,並且清洗掉這些緩沖區來騰出空間緩沖新讀入的數據。
3)找到了足夠的空閑buffer,伺服器進程將從數據文件中讀入這些行所在的每一個數據塊(db block)(DB BLOCK是ORACLE的最小操作單元,即使你想要的數據只是DB BLOCK中很多行中的一行或幾行,ORACLE也會把這個DB BLOCK中的所有行都讀入Oracle DB BUFFER中)放入db buffer的空閑的區域或者覆蓋已被擠出LRU list的非臟數據塊緩沖區,並且排列在LRU列表的頭部,也就是在數據塊放入db buffer之前也是要先申請db buffer中的鎖存器,成功加鎖後,才能讀數據到db buffer。
若數據塊已經存在於db buffer cache(有時也稱db buffer或db cache),即使在db buffer中找到一個沒有事務,而且SCN比自己小的非臟緩存數據塊,伺服器進程仍然要到表的頭部對這條記錄申請加鎖,加鎖成功才能進行後續動作,如果不成功,則要等待前面的進程解鎖後才能進行動作(這個時候阻塞是tx鎖阻塞)。
在記redo日誌時,其具體步驟如下:
1)數據被讀入到db buffer後,伺服器進程將該語句所影響的並被讀入db buffer中的這些行數據的rowid及要更新的原值和新值及scn等信息從PGA逐條的寫入redo log buffer中。在寫入redo log buffer之前也要事先請求redo log buffer的鎖存器,成功加鎖後才開始寫入。
2)當寫入達到redo log buffer大小的三分之一或寫入量達到1M或超過三秒後或發生檢查點時或者dbwr之前發生,都會觸發lgwr進程把redo log buffer的數據寫入磁碟上的redo file文件中(這個時候會產生log file sync等待事件)。
3)已經被寫入redo file的redo log buffer所持有的鎖存器會被釋放,並可被後來的寫入信息覆蓋,redo log buffer是循環使用的。Redo file也是循環使用的,當一個redo file寫滿後,lgwr進程會自動切換到下一redo file(這個時候可能出現log file switch(check point complete)等待事件)。如果是歸檔模式,歸檔進程還要將前一個寫滿的redo file文件的內容寫到歸檔日誌文件中(這個時候可能出現log file switch(archiving needed)。
在為事務建立undo信息時,其具體步驟如下:
1)在完成本事務所有相關的redo log buffer之後,伺服器進程開始改寫這個db buffer的塊頭部事務列表並寫入scn(一開始scn是寫在redo log buffer中的,並未寫在db buffer)。
2)然後包含這個塊的頭部事務列表及scn信息的數據副本放入回滾段中,將這時回滾段中的信息稱為數據塊的「前映像」,這個「前映像」用於以後的回滾、恢復和一致性讀。(回滾段可以存儲在專門的回滾表空間中,這個表空間由一個或多個物理文件組成,並專用於回滾表空間,回滾段也可在其它表空間中的數據文件中開辟)。
在修改信息寫入數據文件時,其具體步驟如下:
1)改寫db buffer塊的數據內容,並在塊的頭部寫入回滾段的地址。
2)將db buffer指針放入dirty list。如果一個行數據多次update而未commit,則在回滾段中將會有多個「前映像」,除了第一個「前映像」含有scn信息外,其他每個"前映像"的頭部都有scn信息和"前前映像"回滾段地址。一個update只對應一個scn,然後伺服器進程將在dirty list中建立一條指向此db buffer塊的指針(方便dbwr進程可以找到dirty list的db buffer數據塊並寫入數據文件中)。接著伺服器進程會從數據文件中繼續讀入第二個數據塊,重復前一數據塊的動作,數據塊的讀入、記日誌、建立回滾段、修改數據塊、放入dirty list。
3)當dirty queue的長度達到閥值(一般是25%),伺服器進程將通知dbwr把臟數據寫出,就是釋放db buffer上的鎖存器,騰出更多的free db buffer。前面一直都是在說明oracle一次讀一個數據塊,其實oracle可以一次讀入多個數據塊(db_file_multiblock_read_count來設置一次讀入塊的個數)
當執行commit時,具體步驟如下:
1)commit觸發lgwr進程,但不強制dbwr立即釋放所有相應db buffer塊的鎖。也就是說有可能雖然已經commit了,但在隨後的一段時間內dbwr還在寫這條sql語句所涉及的數據塊。表頭部的行鎖並不在commit之後立即釋放,而是要等dbwr進程完成之後才釋放,這就可能會出現一個用戶請求另一用戶已經commit的資源不成功的現象。
2)從Commit和dbwr進程結束之間的時間很短,如果恰巧在commit之後,dbwr未結束之前斷電,因為commit之後的數據已經屬於數據文件的內容,但這部分文件沒有完全寫入到數據文件中。所以需要前滾。由於commit已經觸發lgwr,這些所有未來得及寫入數據文件的更改會在實例重啟後,由smon進程根據重做日誌文件來前滾,完成之前commit未完成的工作(即把更改寫入數據文件)。
3)如果未commit就斷電了,因為數據已經在db buffer更改了,沒有commit,說明這部分數據不屬於數據文件。由於dbwr之前觸發lgwr也就是只要數據更改,(肯定要先有log)所有dbwr在數據文件上的修改都會被先一步記入重做日誌文件,實例重啟後,SMON進程再根據重做日誌文件來回滾。
其實smon的前滾回滾是根據檢查點來完成的,當一個全部檢查點發生的時候,首先讓LGWR進程將redologbuffer中的所有緩沖(包含未提交的重做信息)寫入重做日誌文件,然後讓dbwr進程將dbbuffer已提交的緩沖寫入數據文件(不強制寫未提交的)。然後更新控制文件和數據文件頭部的SCN,表明當前資料庫是一致的,在相鄰的兩個檢查點之間有很多事務,有提交和未提交的。
當執行rollback時,具體步驟如下:
伺服器進程會根據數據文件塊和db buffer中塊的頭部的事務列表和SCN以及回滾段地址找到回滾段中相應的修改前的副本,並且用這些原值來還原當前數據文件中已修改但未提交的改變。如果有多個」前映像「,伺服器進程會在一個「前映像」的頭部找到「前前映像」的回滾段地址,一直找到同一事務下的最早的一個「前映像」為止。一旦發出了commit,用戶就不能rollback,這使得commit後dbwr進程還沒有全部完成的後續動作得到了保障。
第五步:提取數據
當語句執行完成之後,查詢到的數據還是在伺服器進程中,還沒有被傳送到客戶端的用戶進程。所以,在伺服器端的進程中,有一個專門負責數據提取的一段代碼。他的作用就是把查詢到的數據結果返回給用戶端進程,從而完成整個查詢動作。
從這整個查詢處理過程中,我們在資料庫開發或者應用軟體開發過程中,需要注意以下幾點:
一是要了解資料庫緩存跟應用軟體緩存是兩碼事情。資料庫緩存只有在資料庫伺服器端才存在,在客戶端是不存在的。只有如此,才能夠保證資料庫緩存中的內容跟資料庫文件的內容一致。才能夠根據相關的規則,防止數據臟讀、錯讀的發生。而應用軟體所涉及的數據緩存,由於跟資料庫緩存不是一碼事情,所以,應用軟體的數據緩存雖然可以提高數據的查詢效率,但是,卻打破了數據一致性的要求,有時候會發生臟讀、錯讀等情況的發生。所以,有時候,在應用軟體上有專門一個功能,用來在必要的時候清除數據緩存。不過,這個數據緩存的清除,也只是清除本機上的數據緩存,或者說,只是清除這個應用程序的數據緩存,而不會清除資料庫的數據緩存。
二是絕大部分SQL語句都是按照這個處理過程處理的。我們DBA或者基於Oracle資料庫的開發人員了解這些語句的處理過程,對於我們進行涉及到SQL語句的開發與調試,是非常有幫助的。有時候,掌握這些處理原則,可以減少我們排錯的時間。特別要注意,資料庫是把數據查詢許可權的審查放在語法語義的後面進行檢查的。所以,有時會若光用資料庫的許可權控制原則,可能還不能滿足應用軟體許可權控制的需要。此時,就需要應用軟體的前台設置,實現許可權管理的要求。而且,有時應用資料庫的許可權管理,也有點顯得繁瑣,會增加伺服器處理的工作量。因此,對於記錄、欄位等的查詢許可權控制,大部分程序涉及人員喜歡在應用程序中實現,而不是在資料庫上實現。
Oracle SQL語句執行順序
(8)SELECT (9) DISTINCT (11) <select_list>
(1) FROM <left_table>
(3) <join_type> JOIN <right_table>
(2) ON <join_condition>
(4) WHERE <where_condition>
(5) GROUP BY <group_by_list>
(6) WITH {CUBE | ROLLUP}
(7) HAVING <having_condition>
(10) ORDER BY <order_by_list>
1)FROM:對FROM子句中的表執行笛卡爾積(交叉聯接),生成虛擬表VT1。
2)ON:對VT1應用ON篩選器,只有那些使為真才被插入到TV2。
3)OUTER (JOIN):如果指定了OUTER JOIN(相對於CROSS JOIN或INNER JOIN),保留表中未找到匹配的行將作為外部行添加到VT2,生成TV3。如果FROM子句包含兩個以上的表,則對上一個聯接生成的結果表和下一個表重復執行步驟1到步驟3,直到處理完所有的表位置。
4)WHERE:對TV3應用WHERE篩選器,只有使為true的行才插入TV4。
5)GROUP BY:按GROUP BY子句中的列列表對TV4中的行進行分組,生成TV5。
6)CUTE|ROLLUP:把超組插入VT5,生成VT6。
7)HAVING:對VT6應用HAVING篩選器,只有使為true的組插入到VT7。
8)SELECT:處理SELECT列表,產生VT8。
9)DISTINCT:將重復的行從VT8中刪除,產品VT9。
10)ORDER BY:將VT9中的行按ORDER BY子句中的列列表順序,生成一個游標(VC10),生成表TV11,並返回給調用者。
以上每個步驟都會產生一個虛擬表,該虛擬表被用作下一個步驟的輸入。這些虛擬表對調用者(客戶端應用程序或者外部查詢)不可用。只有最後一步生成的表才會會給調用者。如果沒有在查詢中指定某一個子句,將跳過相應的步驟。

『貳』 SQL的注入問題(基本原理)

因為or的優先順序小於and,是屬於倒數的1.2的問題,那麼這段就很好理解了

where 後面的條件關系是
true or (true and false)
那麼只要or前面一直為true ,後面無論是什麼結果sql都將執行
or前面的條件

『叄』 sql中的in、exists和join的查詢原理

Hive中的謂詞下推是一種優化技術,其目標是在查詢過程中盡可能地將過濾條件下推到數據源中執行,以減少數據的掃描和處理。然而,這一優化技術有時會導致查詢結果的不一致性。

讓我們通過四個典型的SQL查詢來探討這一問題及其原因。在這四個查詢中,結果的數值有所不同,雖然它們的基本邏輯一致,但條件的放置位置有所不同,從而導致了結果的不一致。

SQL1和SQL3的結果為:20672和9721,這表明它們在處理數據時採用了不同的謂詞下推策略。SQL2和SQL4的結果為:9721和184125,這進一步說明了條件放置位置對查詢結果的影響。

Hive謂詞下推的核心概念是將過濾條件從SQL語句中下推到數據源執行,從而減少了不必要的數據處理。謂詞下推在Join操作中的應用主要遵循以下規則:

1. 對於Inner Join和Full outer Join,條件應寫在ON語句後或WHERE語句後,謂詞下推的性能影響不大。然而,Join操作的性能主要取決於謂詞下推的效率。

2. 對於Left outer Join,當左側表的條件寫在WHERE語句中,而右側表的條件寫在ON語句中時,謂詞下推可以提高性能。

3. 對於Right outer Join,情況相反,左側表條件寫在ON語句中,而右側表條件寫在WHERE語句中時,謂詞下推同樣可以提升性能。

這一策略的影響在於控制了數據處理的順序,從而影響了最終的查詢結果。在使用謂詞下推時,需要根據查詢的預期結果和數據的結構來靈活調整條件的位置,以確保優化的同時不影響查詢的正確性。

總結而言,謂詞下推是一種強大的查詢優化工具,但其應用需要結合具體的數據結構和查詢需求來調整。理解謂詞下推的規則和限制,有助於在查詢優化過程中做出更明智的選擇,從而實現更高效、准確的數據查詢。

『肆』 SQL語句執行過程詳解

SQL語句執行過程詳解
一條sql,plsql的執行到底是怎樣執行的呢?
一、SQL語句執行原理:
第一步:客戶端把語句發給伺服器端執行當我們在客戶端執行 select 語句時,客戶端會把這條 SQL 語句發送給伺服器端,讓伺服器端的
進程來處理這語句。也就是說,Oracle 客戶端是不會做任何的操作,他的主要任務就是把客戶端產生
的一些 SQL 語句發送給伺服器端。雖然在客戶端也有一個資料庫進程,但是,這個進程的作用跟伺服器
上的進程作用事不相同的。伺服器上的資料庫進程才會對SQL 語句進行相關的處理。不過,有個問題需
要說明,就是客戶端的進程跟伺服器的進程是一一對應的。也就是說,在客戶端連接上伺服器後,在客戶
端與伺服器端都會形成一個進程,客戶端上的我們叫做客戶端進程;而伺服器上的我們叫做伺服器進程。
第二步:語句解析
當客戶端把 SQL 語句傳送到伺服器後,伺服器進程會對該語句進行解析。同理,這個解析的工作,
也是在伺服器端所進行的。雖然這只是一個解析的動作,但是,其會做很多「小動作」。
1. 查詢高速緩存(library cache)。伺服器進程在接到客戶端傳送過來的 SQL 語句時,不
會直接去資料庫查詢。而是會先在資料庫的高速緩存中去查找,是否存在相同語句的執行計劃。如果在
數據高速緩存中,則伺服器進程就會直接執行這個 SQL 語句,省去後續的工作。所以,採用高速數據緩
存的話,可以提高 SQL 語句的查詢效率。一方面是從內存中讀取數據要比從硬碟中的數據文件中讀取
數據效率要高,另一方面,也是因為這個語句解析的原因。
不過這里要注意一點,這個數據緩存跟有些客戶端軟體的數據緩存是兩碼事。有些客戶端軟體為了
提高查詢效率,會在應用軟體的客戶端設置數據緩存。由於這些數據緩存的存在,可以提高客戶端應用軟
件的查詢效率。但是,若其他人在伺服器進行了相關的修改,由於應用軟體數據緩存的存在,導致修改的
數據不能及時反映到客戶端上。從這也可以看出,應用軟體的數據緩存跟資料庫伺服器的高速數據緩存
不是一碼事。
2. 語句合法性檢查(data dict cache)。當在高速緩存中找不到對應的 SQL 語句時,則服
務器進程就會開始檢查這條語句的合法性。這里主要是對 SQL 語句的語法進行檢查,看看其是否合乎
語法規則。如果伺服器進程認為這條 SQL 語句不符合語法規則的時候,就會把這個錯誤信息,反饋給客
戶端。在這個語法檢查的過程中,不會對 SQL 語句中所包含的表名、列名等等進行 SQL 他只是語法
上的檢查。
3. 語言含義檢查(data dict cache)。若 SQL 語句符合語法上的定義的話,則伺服器進程
接下去會對語句中的欄位、表等內容進行檢查。看看這些欄位、表是否在資料庫中。如果表名與列名不
准確的話,則資料庫會就會反饋錯誤信息給客戶端。所以,有時候我們寫 select 語句的時候,若語法
與表名或者列名同時寫錯的話,則系統是先提示說語法錯誤,等到語法完全正確後,再提示說列名或表名
錯誤。
4. 獲得對象解析鎖(control structer)。當語法、語義都正確後,系統就會對我們需要查詢
的對象加鎖。這主要是為了保障數據的一致性,防止我們在查詢的過程中,其他用戶對這個對象的結構發
生改變。
5. 數據訪問許可權的核對(data dict cache)。當語法、語義通過檢查之後,客戶端還不一定
能夠取得數據。伺服器進程還會檢查,你所連接的用戶是否有這個數據訪問的許可權。若你連接上伺服器
的用戶不具有數據訪問許可權的話,則客戶端就不能夠取得這些數據。有時候我們查詢數據的時候,辛辛苦
苦地把 SQL 語句寫好、編譯通過,但是,最後系統返回個 「沒有許可權訪問數據」的錯誤信息,讓我們氣
半死。這在前端應用軟體開發調試的過程中,可能會碰到。所以,要注意這個問題,資料庫伺服器進程先
檢查語法與語義,然後才會檢查訪問許可權。
6. 確定最佳執行計劃 ?。當語句與語法都沒有問題,許可權也匹配的話,伺服器進程還是不會直接對
資料庫文件進行查詢。伺服器進程會根據一定的規則,對這條語句進行優化。不過要注意,這個優化是有
限的。一般在應用軟體開發的過程中,需要對資料庫的 sql 語言進行優化,這個優化的作用要大大地大
於伺服器進程的自我優化。所以,一般在應用軟體開發的時候,資料庫的優化是少不了的。當伺服器進程
的優化器確定這條查詢語句的最佳執行計劃後,就會將這條 SQL 語句與執行計劃保存到數據高速緩存
(library cache)。如此的話,等以後還有這個查詢時,就會省略以上的語法、語義與許可權檢查的步驟,
而直接執行 SQL 語句,提高 SQL 語句處理效率。
第三步:語句執行
語句解析只是對 SQL 語句的語法進行解析,以確保伺服器能夠知道這條語句到底表達的是什麼意
思。等到語句解析完成之後,資料庫伺服器進程才會真正的執行這條 SQL 語句。這個語句執行也分兩
種情況。
一是若被選擇行所在的數據塊已經被讀取到數據緩沖區的話,則伺服器進程會直接把這個數據傳遞
給客戶端,而不是從資料庫文件中去查詢數據。
若數據不在緩沖區中,則伺服器進程將從資料庫文件中查詢相關數據,並把這些數據放入到數據緩沖
區中(buffer cache)。
第四步:提取數據
當語句執行完成之後,查詢到的數據還是在伺服器進程中,還沒有被傳送到客戶端的用戶進程。所以,
在伺服器端的進程中,有一個專門負責數據提取的一段代碼。他的作用就是把查詢到的數據結果返回給
用戶端進程,從而完成整個查詢動作。從這整個查詢處理過程中,我們在資料庫開發或者應用軟體開發過
程中,需要注意以下幾點:
一是要了解資料庫緩存跟應用軟體緩存是兩碼事情。資料庫緩存只有在資料庫伺服器端才存在,在
客戶端是不存在的。只有如此,才能夠保證資料庫緩存中的內容跟資料庫文件的內容一致。才能夠根據
相關的規則,防止數據臟讀、錯讀的發生。而應用軟體所涉及的數據緩存,由於跟資料庫緩存不是一碼事
情,所以,應用軟體的數據緩存雖然可以提高數據的查詢效率,但是,卻打破了數據一致性的要求,有時候
會發生臟讀、錯讀等情況的發生。所以,有時候,在應用軟體上有專門一個功能,用來在必要的時候清除
數據緩存。不過,這個數據緩存的清除,也只是清除本機上的數據緩存,或者說,只是清除這個應用程序
的數據緩存,而不會清除資料庫的數據緩存。
二是絕大部分 SQL 語句都是按照這個處理過程處理的。我們 DBA 或者基於 Oracle 資料庫的
開發人員了解這些語句的處理過程,對於我們進行涉及到 SQL 語句的開發與調試,是非常有幫助的。有
時候,掌握這些處理原則,可以減少我們排錯的時間。特別要注意,資料庫是把數據查詢許可權的審查放在
語法語義的後面進行檢查的。所以,有時會若光用資料庫的許可權控制原則,可能還不能滿足應用軟體許可權
控制的需要。此時,就需要應用軟體的前台設置,實現許可權管理的要求。而且,有時應用資料庫的許可權管
理,也有點顯得繁瑣,會增加伺服器處理的工作量。因此,對於記錄、欄位等的查詢許可權控制,大部分程
序涉及人員喜歡在應用程序中實現,而不是在資料庫上實現。
DBCC DROPCLEANBUFFERS
從緩沖池中刪除所有清除緩沖區。
DBCC FREEPROCCACHE
從過程緩存中刪除所有元素。
DBCC FREESYSTEMCACHE
從所有緩存中釋放所有未使用的緩存條目
SQL語句中的函數、關鍵字、排序等執行順序:
1. FROM 子句返回初始結果集。
2. WHERE 子句排除不滿足搜索條件的行。
3. GROUP BY 子句將選定的行收集到 GROUP BY 子句中各個唯一值的組中。
4. 選擇列表中指定的聚合函數可以計算各組的匯總值。
5. 此外,HAVING 子句排除不滿足搜索條件的行。
6. 計算所有的表達式;
7. 使用 order by 對結果集進行排序。
8. 查找你要搜索的欄位。
二、SQL語句執行完整過程:
1.用戶進程提交一個 sql 語句:
update temp set a=a*2,給伺服器進程。
2.伺服器進程從用戶進程把信息接收到後,在 PGA 中就要此進程分配所需內存,存儲相關的信息,如在會
話內存存儲相關的登錄信息等。
3.伺服器進程把這個 sql 語句的字元轉化為 ASCII 等效數字碼,接著這個 ASCII 碼被傳遞給一個
HASH 函數,並返回一個 hash 值,然後伺服器進程將到shared pool 中的 library cache 中去查找是否存在相
同的 hash 值,如果存在,伺服器進程將使用這條語句已高速緩存在 SHARED POOL 的library cache 中的已
分析過的版本來執行。
4.如果不存在,伺服器進程將在 CGA 中,配合 UGA 內容對 sql,進行語法分析,首先檢查語法的正確性,接
著對語句中涉及的表,索引,視圖等對象進行解析,並對照數據字典檢查這些對象的名稱以及相關結構,並根據
ORACLE 選用的優化模式以及數據字典中是否存在相應對象的統計數據和是否使用了存儲大綱來生成一個
執行計劃或從存儲大綱中選用一個執行計劃,然後再用數據字典核對此用戶對相應對象的執行許可權,最後生成
一個編譯代碼。
5.ORACLE 將這條 sql 語句的本身實際文本、HASH 值、編譯代碼、與此語名相關聯的任何統計數據
和該語句的執行計劃緩存在 SHARED POOL 的 library cache中。伺服器進程通過 SHARED POOL 鎖存
器(shared pool latch)來申請可以向哪些共享 PL/SQL 區中緩存這此內容,也就是說被SHARED POOL 鎖存
器鎖定的 PL/SQL 區中的塊不可被覆蓋,因為這些塊可能被其它進程所使用。
6.在 SQL 分析階段將用到 LIBRARY
CACHE,從數據字典中核對表、視圖等結構的時候,需要將數據
字典從磁碟讀入 LIBRARY
CACHE,因此,在讀入之前也要使用LIBRARY
CACHE 鎖存器(library cache
pin,library cache lock)來申請用於緩存數據字典。 到現在為止,這個 sql 語句已經被編譯成可執行的代碼了,
但還不知道要操作哪些數據,所以伺服器進程還要為這個 sql 准備預處理數據。
7.首先伺服器進程要判斷所需數據是否在 db buffer 存在,如果存在且可用,則直接獲取該數據,同時根據
LRU 演算法增加其訪問計數;如果 buffer 不存在所需數據,則要從數據文件上讀取首先伺服器進程將在表頭部
請求 TM 鎖(保證此事務執行過程其他用戶不能修改表的結構),如果成功加 TM 鎖,再請求一些行級鎖(TX
鎖),如果 TM、TX 鎖都成功加鎖,那麼才開始從數據文件讀數據,在讀數據之前,要先為讀取的文件准備好
buffer 空間。伺服器進程需要掃面 LRU list 尋找 free db buffer,掃描的過程中,伺服器進程會把發現的所有
已經被修改過的 db buffer 注冊到 dirty list 中, 這些 dirty buffer 會通過 dbwr 的觸發條件,隨後會被寫出到
數據文件,找到了足夠的空閑 buffer,就可以把請求的數據行所在的數據塊放入到 db buffer 的空閑區域或者
覆蓋已經被擠出 LRU list 的非臟數據塊緩沖區,並排列在 LRU list 的頭部,也就是在數據塊放入 DB
BUFFER 之前也是要先申請 db buffer 中的鎖存器,成功加鎖後,才能讀數據到 db buffer。
8.記日誌 現在數據已經被讀入到 db buffer 了,現在伺服器進程將該語句所影響的並被讀
入 db buffer 中的這些行數據的 rowid 及要更新的原值和新值及 scn 等信息從 PGA 逐條的寫入 redo log
buffer 中。在寫入 redo log buffer 之前也要事先請求 redo log buffer 的鎖存器,成功加鎖後才開始寫入,當
寫入達到 redo log buffer 大小的三分之一或寫入量達到 1M 或超過三秒後或發生檢查點時或者 dbwr 之前
發生,都會觸發 lgwr 進程把 redo log buffer 的數據寫入磁碟上的 redo file 文件中(這個時候會產生log file
sync 等待事件)
已經被寫入 redofile 的 redo log buffer 所持有的鎖存器會被釋放,並可被後來的寫入信息覆蓋,
redo log buffer是循環使用的。Redo file 也是循環使用的,當一個 redo file 寫滿後,lgwr 進程會自動切換到
下一 redo file(這個時候可能出現 log fileswitch(checkpoint complete)等待事件)。如果是歸檔模式,歸檔進
程還要將前一個寫滿的 redo file 文件的內容寫到歸檔日誌文件中(這個時候可能出現 log file
switch(archiving needed)。
9.為事務建立回滾段 在完成本事務所有相關的 redo log buffer 之後,伺服器進程開始改寫這個 db buffer
的塊頭部事務列表並寫入 scn,然後 包含這個塊的頭部事務列表及 scn 信息的數據副本放入回滾段中,將
這時回滾段中的信息稱為數據塊的「前映像「,這個」前映像「用於以後的回滾、恢復和一致性讀。(回滾段可以
存儲在專門的回滾表空間中,這個表空間由一個或多個物理文件組成,並專用於回滾表空間,回滾段也可在其它
表空間中的數據文件中開辟。
10.本事務修改數據塊 准備工作都已經做好了,現在可以改寫 db buffer 塊的數據內容了,並在塊的頭部寫
入回滾段的地址。
11.放入 dirty list 如果一個行數據多次 update 而未 commit,則在回滾段中將會有多個「前映像「,除了第
一個」前映像「含有 scn 信息外,其他每個「前映像「的頭部都有 scn 信息和「前前映像」回滾段地址。一個
update 只對應一個 scn,然後伺服器進程將在 dirty list 中建立一
條指向此 db buffer 塊的指針(方便 dbwr 進程可以找到 dirty list 的 db buffer 數據塊並寫入數據文件中)。
接著伺服器進程會從數據文件中繼續讀入第二個數據塊,重復前一數據塊的動作,數據塊的讀入、記日誌、建
立回滾段、修改數據塊、放入 dirty list。當 dirty queue 的長度達到閥值(一般是 25%),伺服器進程將通知
dbwr 把臟數據寫出,就是釋放 db buffer 上的鎖存器,騰出更多的 free db buffer。前面一直都是在說明
oracle 一次讀一個數據塊,其實 oracle 可以一次讀入多個數據塊(db_file_multiblock_read_count 來設置一
次讀入塊的個數)
說明:
在預處理的數據已經緩存在 db buffer 或剛剛被從數據文件讀入到 db buffer 中,就要根據 sql 語句
的類型來決定接下來如何操作。
1>如果是 select 語句,則要查看 db buffer 塊的頭部是否有事務,如果有事務,則從回滾段中讀取數據;如
果沒有事務,則比較 select 的 scn 和 db buffer 塊頭部的 scn,如果前者小於後者,仍然要從回滾段中讀取數據;
如果前者大於後者,說明這是一非臟緩存,可以直接讀取這個 db buffer 塊的中內容。
2>如果是 DML 操作,則即使在 db buffer 中找到一個沒有事務,而且 SCN 比自己小的非臟
緩存數據塊,伺服器進程仍然要到表的頭部對這條記錄申請加鎖,加鎖成功才能進行後續動作,如果不成功,則要
等待前面的進程解鎖後才能進行動作(這個時候阻塞是 tx 鎖阻塞)。
用戶 commit 或 rollback 到現在為止,數據已經在 db buffer 或數據文件中修改完
成,但是否要永久寫到數文件中,要由用戶來決定 commit(保存更改到數據文件) rollback 撤銷數據的更改)。
1.用戶執行 commit 命令
只有當 sql 語句所影響的所有行所在的最後一個塊被讀入 db buffer 並且重做信息被寫入 redo log
buffer(僅指日誌緩沖區,而不包括日誌文件)之後,用戶才可以發去 commit 命令,commit 觸發 lgwr 進程,但不
強制立即 dbwr來釋放所有相應 db buffer 塊的鎖(也就是no-force-at-commit,即提交不強制寫),也就是說有
可能雖然已經 commit 了,但在隨後的一段時間內 dbwr 還在寫這條 sql 語句所涉及的數據塊。表頭部的行鎖
並不在 commit 之後立即釋放,而是要等 dbwr 進程完成之後才釋放,這就可能會出現一個用戶請求另一用戶
已經 commit 的資源不成功的現象。
A .從 Commit 和 dbwr 進程結束之間的時間很短,如果恰巧在 commit 之後,dbwr 未結束之前斷電,因為
commit 之後的數據已經屬於數據文件的內容,但這部分文件沒有完全寫入到數據文件中。所以需要前滾。由
於 commit 已經觸發 lgwr,這些所有未來得及寫入數據文件的更改會在實例重啟後,由 smon 進程根據重做日
志文件來前滾,完成之前 commit 未完成的工作(即把更改寫入數據文件)。
B.如果未 commit 就斷電了,因為數據已經在 db buffer 更改了,沒有 commit,說明這部分數據不屬於數
據文件,由於 dbwr 之前觸發 lgwr 也就是只要數據更改,(肯定要先有 log) 所有 DBWR,在數據文件上的修改
都會被先一步記入重做日誌文件,實例重啟後,SMON 進程再根據重做日誌文件來回滾。
其實 smon 的前滾回滾是根據檢查點來完成的,當一個全部檢查點發生的時候,首先讓 LGWR 進程將
redo log buffer 中的所有緩沖(包含未提交的重做信息)寫入重做日誌文件,然後讓 dbwr 進程將 db buffer 已
提交的緩沖寫入數據文件(不強制寫未提交的)。然後更新控制文件和數據文件頭部的 SCN,表明當前資料庫
是一致的,在相鄰的兩個檢查點之間有很多事務,有提交和未提交的。
像前面的前滾回滾比較完整的說法是如下的說明:

A.發生檢查點之前斷電,並且當時有一個未提交的改變正在進行,實例重啟之後,SMON 進程將從上一個
檢查點開始核對這個檢查點之後記錄在重做日誌文件中已提交的和未提交改變,因為
dbwr 之前會觸發 lgwr,所以 dbwr 對數據文件的修改一定會被先記錄在重做日誌文件中。因此,斷電前被
DBWN 寫進數據文件的改變將通過重做日誌文件中的記錄進行還原,叫做回滾,
B. 如果斷電時有一個已提交,但 dbwr 動作還沒有完全完成的改變存在,因為已經提交,提交會觸發 lgwr
進程,所以不管 dbwr 動作是否已完成,該語句將要影響的行及其產生的結果一定已經記錄在重做日誌文件中
了,則實例重啟後,SMON 進程根據重做日誌文件進行前滾.
實例失敗後用於恢復的時間由兩個檢查點之間的間隔大小來決定,可以通個四個參數設置檢查點執行的頻
率:

Log_checkpoint_interval:
決定兩個檢查點之間寫入重做日誌文件的系統物理塊(redo blocks)
的大小,默認值是 0,無限制。
log_checkpoint_timeout:
兩 個 檢 查 點 之 間 的 時 間 長 度(秒)默 認 值 1800s。
fast_start_io_target:
決定了用於恢復時需要處理的塊的多少,默認值是 0,無限制。
fast_start_mttr_target:
直接決定了用於恢復的時間的長短,默認值是 0,無限制(SMON 進程執行的前滾
和回滾與用戶的回滾是不同的,SMON 是根據重做日誌文件進行前滾或回滾,而用戶的回滾一定是根據回滾段
的內容進行回滾的。
在這里要說一下回滾段存儲的數據,假如是 delete 操作,則回滾段將會記錄整個行的數據,假如是 update,
則回滾段只記錄被修改了的欄位的變化前的數據(前映像),也就是沒有被修改的欄位是不會被記錄的,假如是
insert,則回滾段只記錄插入記錄的 rowid。 這樣假如事務提交,那回滾段中簡單標記該事務已經提交;假如是
回退,則如果操作是 delete,回退的時候把回滾段中數據重新寫回數據塊,操作如果是 update,則把變化前數據
修改回去,操作如果是 insert,則根據記錄的 rowid 把該記錄刪除。
2.如果用戶 rollback。
則伺服器進程會根據數據文件塊和 DB BUFFER 中塊的頭部的事務列表和 SCN 以及回滾段地址找到
回滾段中相應的修改前的副本,並且用這些原值來還原當前數據文件中已修改但未提交的改變。如果有多個
「前映像」,伺服器進程會在一個「前映像」的頭部找到「前前映像」的回滾段地址,一直找到同一事務下的最早的
一個「前映像」為止。一旦發出了 COMMIT,用戶就不能rollback,這使得 COMMIT 後 DBWR 進程還沒有
全部完成的後續動作得到了保障。到現在為例一個事務已經結束了。
說明:
TM 鎖:
符合 lock 機制的,用於保護對象的定義不被修改。 TX 鎖:
這個鎖代表一個事務,是行
級鎖,用數據塊頭、數據記錄頭的一些欄位表示,也是符合 lock 機制,有 resource structure、lock
structure、enqueue 演算法。

熱點內容
安卓設計app哪個好 發布:2024-11-05 13:18:34 瀏覽:177
資料庫pd 發布:2024-11-05 13:02:45 瀏覽:654
安卓手機什麼情況才要換電池 發布:2024-11-05 13:01:49 瀏覽:710
手機上的賬號密碼自動保存在哪裡 發布:2024-11-05 12:28:52 瀏覽:724
虛擬機的內網伺服器是什麼 發布:2024-11-05 12:23:35 瀏覽:59
安卓怎麼查今天去了哪裡 發布:2024-11-05 12:14:28 瀏覽:710
安卓簡訊app哪個好 發布:2024-11-05 12:11:28 瀏覽:548
正版解壓工具 發布:2024-11-05 12:09:00 瀏覽:138
愛奇藝會員密碼在哪裡設置 發布:2024-11-05 12:08:49 瀏覽:788
mysql打包資料庫 發布:2024-11-05 11:55:29 瀏覽:947