pythoncmdb
A. python能做什麼,能夠開發什麼項目
Python是一種計算機程序設計語言。是一種面向對象的動態類型語言,最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。
Python是一種解釋型腳本語言,可以應用於Web 和 Internet開發、科學計算和統計、人工智慧、教育、桌面界面開發、軟體開發、後端開發這些領域。
Python的應用
1、系統編程
提供API(Application Programming Interface應用程序編程介面),能方便進行系統維護和管理,linux下標志性語言之一,是很多系統管理員理想的編程工具。
2、圖形處理
有PIL、Tkinter等圖形庫支持,能方便進行圖形處理。
3、數學處理
NumPy擴展提供大量與許多標准數學庫的介面。
4、文本處理
python提供的re模塊能支持正則表達式,還提供SGML,XML分析模塊,許多程序員利用python進行XML程序的開發。
5、資料庫編程
程序員可通過遵循Python DB-API(資料庫應用程序編程介面)規范的模塊與Microsoft sql Server,Oracle,Sybase,DB2,MySQL、SQLite等資料庫通信。python自帶有一個Gadfly模塊,提供了一個完整的SQL環境。
6、網路編程
提供豐富的模塊支持sockets編程,能方便快速地開發分布式應用程序。很多大規模軟體開發計劃例如Zope,Mnet 及BitTorrent. Google都在廣泛地使用它。
7、Web編程
應用的開發語言,支持最新的XML技術。
8、多媒體應用
Python的PyOpenGL模塊封裝了「OpenGL應用程序編程介面」,能進行二維和三維圖像處理。PyGame模塊可用於編寫游戲軟體。
9、pymo引擎
PYMO全稱為python memories off,是一款運行於Symbian S60V3,Symbian3,S60V5, Symbian3, Android系統上的AVG游戲引擎。因其基於python2.0平台開發,並且適用於創建秋之回憶(memories off)風格的AVG游戲,故命名為PYMO。
10、黑客編程
python有一個hack的庫,內置了你熟悉的或不熟悉的函數,但是缺少成就感。
B. Python培訓課程內容都有什麼
下面是Python全棧開發+人工智慧的學習內容:
階段一:Python開發基礎
Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。
階段二:Python高級編程和資料庫開發
Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。
階段三:前端開發
Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquery&bootstrap開發、前端框架VUE開發等。
階段四:WEB框架開發
Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。
階段五:爬蟲開發
Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。
階段六:全棧項目實戰
Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。
階段七:數據分析
Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。
階段八:人工智慧
Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、數據分析 、圖像識別、自然語言翻譯等。
階段九:自動化運維&開發
Python全棧開發與人工智慧之自動化運維&開發學習內容包括:CMDB資產管理系統開發、IT審計+主機管理系統開發、分布式主機監控系統開發等。
階段十:高並發語言GO開發
Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。
C. Python都是學什麼
以下是老男孩教育Python全棧課程內容:階段一:Python開發基礎
Python開發基礎課程內容包括:計算機硬體、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程式控制制、字元編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標准庫學習,b加密\re正則\logging日誌模塊等,軟體開發規范學習,計算器程序、ATM程序開發等。
階段二:Python高級級編編程&資料庫開發
Python高級級編編程&資料庫開發課程內容包括:面向對象介紹、特性、成員變數、方法、封裝、繼承、多態、類的生成原理、MetaClass、__new__的作用、抽象類、靜態方法、類方法、屬性方法、如何在程序中使用面向對象思想寫程序、選課程序開發、TCP/IP協議介紹、Socket網路套接字模塊學習、簡單遠程命令執行客戶端開發、C\S架構ftp伺服器開發、線程、進程、隊列、IO多路模型、資料庫類型、特性介紹,表欄位類型、表結構構建語句、常用增刪改查語句、索引、存儲過程、視圖、觸發器、事務、分組、聚合、分頁、連接池、基於資料庫的學員管理系統開發等。
階段三:前端開發
前端開發課程內容包括:HTML\CSS\JS學習、DOM操作、JSONP、原生Ajax非同步載入、購物商城開發、Jquery、動畫效果、事件、定時期、輪播圖、跑馬燈、HTML5\CSS3語法學習、bootstrap、抽屜新熱榜開發、流行前端框架介紹、Vue架構剖析、mvvm開發思想、Vue數據綁定與計算屬性、條件渲染類與樣式綁定、表單控制項綁定、事件綁定webpack使用、vue-router使用、vuex單向數據流與應用結構、vuex actions與mutations熱重載、vue單頁面項目實戰開發等。
階段四:WEB框架開發
WEB框架開發課程內容包括:Web框架原理剖析、Web請求生命周期、自行開發簡單的Web框架、MTV\MVC框架介紹、Django框架使用、路由系統、模板引擎、FBV\CBV視圖、Models ORM、FORM、表單驗證、Django session & cookie、CSRF驗證、XSS、中間件、分頁、自定義tags、Django Admin、cache系統、信號、message、自定義用戶認證、Memcached、redis緩存學習、RabbitMQ隊列學習、Celery分布式任務隊列學習、Flask框架、Tornado框架、Restful API、BBS+Blog實戰項目開發等。
階段五:爬蟲開發
爬蟲開發課程內容包括:Requests模塊、BeautifulSoup,Selenium模塊、PhantomJS模塊學習、基於requests實現登陸:抽屜、github、知乎、博客園、爬取拉鉤職位信息、開發Web版微信、高性能IO性能相關模塊:asyncio、aiohttp、grequests、Twisted、自定義開發一個非同步非阻塞模塊、驗證碼圖像識別、Scrapy框架以及源碼剖析、框架組件介紹(engine、spider、downloader、scheler、pipeline)、分布式爬蟲實戰等。
階段六:全棧項目實戰
全棧項目實戰課程內容包括:互聯網企業專業開發流程講解、git、github協作開發工具講解、任務管理系統講解、介面單元測試、敏捷開發與持續集成介紹、django + uwsgi + nginx生產環境部署學習、介面文檔編寫示例、互聯網企業大型項目架構圖深度講解、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。
階段七:數據分析
數據分析課程內容包括:金融、股票知識入門股票基本概念、常見投資工具介紹、市基本交易規則、A股構成等,K線、平均線、KDJ、MACD等各項技術指標分析,股市操作模擬盤演示量化策略的開發流程,金融量化與Python,numpy、pandas、matplotlib模塊常用功能學習在線量化投資平台:優礦、聚寬、米筐等介紹和使用、常見量化策略學習,如雙均線策略、因子選股策略、因子選股策略、小市值策略、海龜交易法則、均值回歸、策略、動量策略、反轉策略、羊駝交易法則、PEG策略等、開發一個簡單的量化策略平台,實現選股、擇時、倉位管理、止盈止損、回測結果展示等功能。
階段八:人工智慧
人工智慧課程內容包括:機器學習要素、常見流派、自然語言識別、分析原理詞向量模型word2vec、剖析分類、聚類、決策樹、隨機森林、回歸以及神經網路、測試集以及評價標准Python機器學習常用庫scikit-learn、數據預處理、Tensorflow學習、基於Tensorflow的CNN與RNN模型、Caffe兩種常用數據源製作、OpenCV庫詳解、人臉識別技術、車牌自動提取和遮蔽、無人機開發、Keras深度學習、貝葉斯模型、無人駕駛模擬器使用和開發、特斯拉遠程式控制制API和自動化駕駛開發等。
階段九:自動化運維&開發
自動化運維&開發課程內容包括:設計符合企業實際需求的CMDB資產管理系統,如安全API介面開發與使用,開發支持windows和linux平台的客戶端,對其它系統開放靈活的api設計與開發IT資產的上線、下線、變更流程等業務流程。IT審計+主機管理系統開發,真實企業系統的用戶行為、管理許可權、批量文件操作、用戶登錄報表等。分布式主機監控系統開發,監控多個服務,多種設備,報警機制,基於http+restful架構開發,實現水平擴展,可輕松實現分布式監控等功能。
階段十:高並發語言GO開發高並發語言GO開發課程內容包括:Golang的發展介紹、開發環境搭建、golang和其他語言對比、字元串詳解、條件判斷、循環、使用數組和map數據類型、go程序編譯和Makefile、gofmt工具、godoc文檔生成工具詳解、斐波那契數列、數據和切片、make&new、字元串、go程序調試、slice&map、map排序、常用標准庫使用、文件增刪改查操作、函數和面向對象詳解、並發、並行與goroute、channel詳解goroute同步、channel、超時與定時器reover捕獲異常、Go高並發模型、Lazy生成器、並發數控制、高並發web伺服器的開發等。
D. python常用到哪些庫
Python作為一個設計優秀的程序語言,現在已廣泛應用於各種領域,依靠其強大的第三方類庫,Python在各個領域都能發揮巨大的作用。
下面我們就來看一下python中常用到的庫:
數值計算庫:
1. NumPy
支持多維數組與矩陣運算,也針對數組運算提供大量的數學函數庫。通常與SciPy和Matplotlib一起使用,支持比Python更多種類的數值類型,其中定義的最重要的對象是稱為ndarray的n維數組類型,用於描述相同類型的元素集合,可以使用基於0的索引訪問集合中元素。
2. SciPy
在NumPy庫的基礎上增加了眾多的數學、科學及工程計算中常用的庫函數,如線性代數、常微分方程數值求解、信號處理、圖像處理、稀疏矩陣等,可進行插值處理、信號濾波,以及使用C語言加速計算。
3. Pandas
基於NumPy的一種工具,為解決數據分析任務而生。納入大量庫和一些標準的數據模型,提供高效地操作大型數據集所需的工具及大量的能快速便捷處理數據的函數和方法,為時間序列分析提供很好的支持,提供多種數據結構,如Series、Time-Series、DataFrame和Panel。
數據可視化庫:
4. Matplotlib
第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常復雜。
5. Seaborn
利用了Matplotlib,用簡潔的代碼來製作好看的圖表。與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。
6. ggplot
基於R的一個作圖庫ggplot2,同時利用了源於《圖像語法》(The Grammar of Graphics)中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的復雜度。
7. Bokeh
跟ggplot一樣,Bokeh也基於《圖形語法》的概念。與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網路的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網路應用。
8. Plotly
可以通過Python notebook使用,與Bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。
9. pygal
與Bokeh和Plotly一樣,提供可直接嵌入網路瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。
10. geoplotlib
用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖。必須安裝Pyglet(一個面向對象編程介面)方可使用。
11. missingno
用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。
web開發庫:
12. Django
一個高級的Python Web框架,支持快速開發,提供從模板引擎到ORM所需的一切東西,使用該庫構建App時,必須遵循Django的方式。
13. Socket
一個套接字通訊底層庫,用於在伺服器和客戶端間建立TCP或UDP連接,通過連接發送請求與響應。
14. Flask
一個基於Werkzeug、Jinja 2的Python輕量級框架(microframework),默認配備Jinja模板引擎,也包含其他模板引擎或ORM供選擇,適合用來編寫API服務(RESTful rervices)。
15. Twisted
一個使用Python實現的基於事件驅動的網路引擎框架,建立在deferred object之上,一個通過非同步架構實現的高性能的引擎,不適用於編寫常規的Web Apps,更適用於底層網路。
資料庫管理:
16. MySQL-python
又稱MySQLdb,是Python連接MySQL最流行的一個驅動,很多框架也基於此庫進行開發。只支持Python 2.x,且安裝時有許多前置條件。由於該庫基於C語言開發,在Windows平台上的安裝非常不友好,經常出現失敗的情況,現在基本不推薦使用,取代品為衍生版本。
17. mysqlclient
完全兼容MySQLdb,同時支持Python 3.x,是Django ORM的依賴工具,可使用原生SQL來操作資料庫,安裝方式與MySQLdb一致。
18. PyMySQL
純Python實現的驅動,速度比MySQLdb慢,最大的特點為安裝方式簡潔,同時也兼容MySQL-python。
19. SQLAlchemy
一種既支持原生SQL,又支持ORM的工具。ORM是Python對象與資料庫關系表的一種映射關系,可有效提高寫代碼的速度,同時兼容多種資料庫系統,如SQLite、MySQL、PostgreSQL,代價為性能上的一些損失。
自動化運維:
20. jumpsever跳板機
一種由Python編寫的開源跳板機(堡壘機)系統,實現了跳板機的基本功能,包含認證、授權和審計,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap編寫,界面美觀,自動收集硬體信息,支持錄像回放、命令搜索、實時監控、批量上傳下載等功能,基於SSH協議進行管理,客戶端無須安裝agent。主要用於解決可視化安全管理,因完全開源,容易再次開發。
21. Mage分布式監控系統
一種用Python開發的自動化監控系統,可監控常用系統服務、應用、網路設備,可在一台主機上監控多個不同服務,不同服務的監控間隔可以不同,同一個服務在不同主機上的監控間隔、報警閾值可以不同,並提供數據可視化界面。
22. Mage的CMDB
一種用Python開發的硬體管理系統,包含採集硬體數據、API、頁面管理3部分功能,主要用於自動化管理筆記本、路由器等常見設備的日常使用。由伺服器的客戶端採集硬體數據,將硬體信息發送至API,API負責將獲取的數據保存至資料庫中,後台管理程序負責對伺服器信息進行配置和展示。
23. 任務調度系統
一種由Python開發的任務調度系統,主要用於自動化地將一個服務進程分布到其他多個機器的多個進程中,一個服務進程可作為調度者依靠網路通信完成這一工作。
24. Python運維流程系統
一種使用Python語言編寫的調度和監控工作流的平台,內部用於創建、監控和調整數據管道。允許工作流開發人員輕松創建、維護和周期性地調度運行工作流,包括了如數據存儲、增長分析、Email發送、A/B測試等諸多跨多部門的用例。
GUI編程:
25. Tkinter
一個Python的標准GUI庫,可以快速地創建GUI應用程序,可以在大多數的UNIX平台下使用,同樣可以應用在Windows和Macintosh系統中,Tkinter 8.0的後續版本可以實現本地窗口風格,並良好地運行在絕大多數平台中。
26. wxPython
一款開源軟體跨平台GUI庫wxWidgets的Python封裝和Python模塊,是Python語言的一套優秀的GUI圖形庫,允許程序員很方便地創建完整的、功能健全的GUI用戶界面。
27. PyQt
一個創建GUI應用程序的工具庫,是Python編程語言和Qt的成功融合,可以運行在所有主要操作系統上,包括UNIX、Windows和Mac。PyQt採用雙許可證,開發人員可以選擇GPL和商業許可,從PyQt的版本4開始,GPL許可證可用於所有支持的平台。
28. PySide
一個跨平台的應用程式框架Qt的Python綁定版本,提供與PyQt類似的功能,並相容API,但與PyQt不同處為其使用LGPL授權。
更多Python知識請關注Python自學網。
E. python是學什麼的
學習python主要有自學和報班學習兩種方式。
具體學的順序如下:
①Python軟體開發基礎
掌握計算機的構成和工作原理
會使用Linux常用工具
熟練使用Docker的基本命令
建立Python開發環境,並使用print輸出
使用Python完成字元串的各種操作
使用Python re模塊進行程序設計
使用Python創建文件、訪問、刪除文件
掌握import 語句、From…import 語句、From…import* 語句、方法的引用、Python中的包
②Python軟體開發進階
能夠使用Python面向對象方法開發軟體
能夠自己建立資料庫,表,並進行基本資料庫操作
掌握非關系資料庫MongoDB的使用,掌握Redis開發
能夠獨立完成TCP/UDP服務端客戶端軟體開發,能夠實現ftp、http伺服器,開發郵件軟體
能開發多進程、多線程軟體
③Python全棧式WEB工程師
能夠獨立完成後端軟體開發,深入理解Python開發後端的精髓
能夠獨立完成前端軟體開發,並和後端結合,熟練掌握使用Python進行全站Web開發的技巧
④Python多領域開發
能夠使用Python熟練編寫爬蟲軟體
能夠熟練使用Python庫進行數據分析
招聘網站Python招聘職位數據爬取分析
掌握使用Python開源人工智慧框架進行人工智慧軟體開發、語音識別、人臉識別
掌握基本設計模式、常用演算法
掌握軟體工程、項目管理、項目文檔、軟體測試調優的基本方法
Python目前是比較火,學習之後可以從事軟體開發、數據挖掘等工作,發展前景非常好,普通人也可以學習。
想要系統學習,你可以考察對比一下開設有IT專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,建議實地考察對比一下。
祝你學有所成,望採納。
F. python後端開發需要學什麼
第一階段:Python語言基礎
主要學習Python最基礎知識,如Python3、數據類型、字元串、函數、類、文件操作等。階段課程結束後,學員需要完成Pygame實戰飛機大戰、2048等項目。
第二階段:Python語言高級
主要學習Python庫、正則表達式、進程線程、爬蟲、遍歷以及MySQL資料庫。
第三階段:Pythonweb開發
主要學習HTML、CSS、JavaScript、jQuery等前端知識,掌握python三大後端框架(Django、 Flask以及Tornado)。需要完成網頁界面設計實戰;能獨立開發網站。
第四階段:Linux基礎
主要學習Linux相關的各種命令,如文件處理命令、壓縮解壓命令、許可權管理以及Linux Shell開發等。
第五階段:Linux運維自動化開發
主要學習Python開發Linux運維、Linux運維報警工具開發、Linux運維報警安全審計開發、Linux業務質量報表工具開發、Kali安全檢測工具檢測以及Kali 密碼破解實戰。
第六階段:Python爬蟲
主要學習python爬蟲技術,掌握多線程爬蟲技術,分布式爬蟲技術。
第七階段:Python數據分析和大數據
主要學習numpy數據處理、pandas數據分析、matplotlib數據可視化、scipy數據統計分析以及python 金融數據分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。
第八階段:Python機器學習
主要學習KNN演算法、線性回歸、邏輯斯蒂回歸演算法、決策樹演算法、樸素貝葉斯演算法、支持向量機以及聚類k-means演算法。
關於python後端開發需要學什麼的內容,青藤小編就和您分享到這里了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於python編程的技巧及素材等內容,可以點擊本站的其他文章進行學習。
G. 如何用python做一個設備運維軟體
Python開發的jumpserver跳板機
使用python語言編寫的調度和監控工作流的平台內部用來創建、監控和調整數據管道。任何工作流都可以在這個使用Python來編寫的平台上運行。
企業主要用於解決:通俗點說就是規范運維的操作,加入審批,一步一步操作的概念。
是一種允許工作流開發人員輕松創建、維護和周期性地調度運行工作流(即有向無環圖或成為DAGs)的工具。這些工作流包括了如數據存儲、增長分析、Email發送、A/B測試等等這些跨越多部門的用例。
這個平台擁有和 Hive、Presto、MySQL、HDFS、Postgres和S3交互的能力,並且提供了鉤子使得系統擁有很好地擴展性。除了一個命令行界面,該工具還提供了一個基於Web的用戶界面讓您可以可視化管道的依賴關系、監控進度、觸發任務等。
來個小總結