pythonredis隊列
Ⅰ python 常用的標准庫以及第三方庫有哪些
Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、孝高模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
將源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解肢攜決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模歷慎伏塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。
Ⅱ python入門需要學哪些
初學者學習Python需循序漸進,可以從以下內容入手學習:
1.Python基礎知識
學習任何一門編程語言都需要學習相關語法知識,Python基礎知識的學習主要包括Python解釋器執行原理、字元編碼、注釋、變數、縮進、流程式控制制、文件操作、數據類型、數據類型內置方法、字元串格式化、運算符、輸入輸出、三元運算、collections、列表、字典、元組、集合、IO操作、文件增刪改查、函數等。
5.資料庫、緩存、隊列
Python資料庫、緩存、隊列學習內容為Python操作redis、Python操作memcache、rabbitMQ消息隊列、資料庫介紹、mysql資料庫安裝使用、mysql管理、mysql數據類型、常用mysql命令、創建資料庫、外鍵、增刪改查表、許可權、事務、索引、Python操作mysql等。
6.Web開發基礎
Python之Web開發基礎學習內容為HTML基礎、CSS基礎、JavaScript基礎、局部變數和全局變數、集合、數組、字典、函數參數、原型、面向對象、作用域、dom編程、jquery介紹、jquery選擇器、jquery屬性和CSS操作、jquery文檔處理、jquery篩選、jquery事件託管、jquery事件、jquery ajax、jquery擴展方法、bootstrap使用、EasyUI介紹和使用等。
7.Web框架學習
Python之Web框架學習內容為Web框架本質、socket伺服器、基於反射的路由系統、WSGI介凱閉行紹及原理實現態御、開發自己的Web框架、MVC和MTV、路由系統、模板、django基礎學習與使用、普通路由和動態路由、模板引擎、ORM介紹、Django ORM增刪改查學習、自定義tag、django進階學習與使用、模型綁定、Form表單驗證、Django ORM進階學習、ModelForm、自定義Validator等。
Ⅲ Python 非同步任務隊列Celery 使用
在 Python 中定義 Celery 的時候,我們要引入 Broker,中文翻譯過來就是「中間人」的意思。在工頭(生產者)提出任務的時候,把所有的任務放到 Broker 裡面,在 Broker 的另外一頭,一群碼農(消費者)等著取出一個個任務准備著手做。這種模式註定了整個系統會是個開環系統,工頭對於碼農們把任務做的怎樣是不知情的。所以我們要引入 Backend 來保存每次任務的結果。這個 Backend 也是存儲任務的信息用的,只不過這里存的是那些任務的返回結果。我們可以選擇只讓錯誤執行的任務返回結果到 Backend,這樣我們取回結果,便可以知道有多少任務執行失敗了。
其實現架構如下圖所示:
可以看到,Celery 主要包含以下幾個模塊:
celery可以通過pip自動安裝。
broker 可選擇使用RabbitMQ/redis,backend可選擇使用RabbitMQ/redis/MongoDB。RabbitMQ/redis/mongoDB的安裝請參考對應的官方文檔。
------------------------------rabbitmq相關----------------------------------------------------------
官網安裝方法: http://www.rabbitmq.com/install-windows.html
啟動管理插件:sbin/rabbitmq-plugins enable rabbitmq_management 啟動rabbitmq:sbin/rabbitmq-server -detached
rabbitmq已經啟動,可以打開頁面來看看 地址: http://localhost:15672/#/
用戶名密碼都是guest 。進入可以看到具體頁面。 關於rabbitmq的配置,網上很多 自己去搜以下就ok了。
------------------------------rabbitmq相關--------------------------------------------------------
項目結構如下:
使用前,需要三個方面:celery配置,celery實例,需執行的任務函數,如下:
Celery 的配置比較多,可以在 官方配置文檔: http://docs.celeryproject.org/en/latest/userguide/configuration.html 查詢每個配置項的含義。
當然,要保證上述非同步任務and下述定時任務都能正常執行,就需要先啟動celery worker,啟動命令行如下:
需 啟動beat ,執行定時任務時, Celery會通過celery beat進程來完成。Celery beat會保持運行, 一旦到了某一定時任務需要執行時, Celery beat便將其加入到queue中. 不像worker進程, Celery beat只需要一個即可。而且為了避免有重復的任務被發送出去,所以Celery beat僅能有一個。
命令行啟動:
如果你想將celery worker/beat要放到後台運行,推薦可以扔給supervisor。
supervisor.conf如下:
Ⅳ Python 常用的標准庫以及第三方庫有哪些
我也來幾個吧
standard libs:
itertools http://docs.python.org/2/library/itertools.html
functools http://docs.python.org/2/library/functools.html 學好python有必要掌握上面這兩個庫吧,
re 正則
subprocess http://docs.python.org/2/library/subprocess.html 調用shell命令的神器
pdb 調試
traceback 調試
pprint 漂亮的輸出
logging 日誌
threading和multiprocessing 多線程
urllib/urllib2/httplib http庫,httplib底層一點,推薦第三方的庫requests
os/sys 系統,環境相關
Queue 隊列
pickle/cPickle 序列化工具
hashlib md5, sha等hash演算法
cvs
json/simplejson python的json庫,據so上的討論和benchmark,simplejson的性能要高於json
timeit 計算代碼運行的時間等等
cProfile python性能測量模塊
glob 類似與listfile,可以用來查找文件
atexit 有一個注冊函數,可用於正好在腳本退出運行前執行一些代碼
dis python 反匯編,當對某條語句不理解原理時,可以用dis.dis 函數來查看代碼對應的python 解釋器指令等等。
3th libs:
paramiko https://github.com/paramiko/paramiko ssh python 庫
selenium https://pypi.python.org/pypi/selenium 瀏覽器自動化測試工具selenium的python 介面
lxml http://lxml.de/ python 解析html,xml 的神器
mechanize https://pypi.python.org/pypi/mechanize/ Stateful programmatic web browsing
pycurl https://pypi.python.org/pypi/pycurl cURL library mole for Python
Fabric http://docs.fabfile.org/en/1.8/
Fabric is a Python (2.5 or higher) library and command-line tool for
streamlining the use of SSH for application deployment or systems
administration tasks.
xmltodict https://github.com/martinblech/xmltodict xml 轉 dict,真心好用
urllib3 和 requests: 當然其實requests就夠了 Requests: HTTP for Humans
flask http://flask.pocoo.org/python web 微框架
ipdb 調試神器,同時推薦ipython!結合ipython使用
redis redis python介面
pymongo mongodbpython介面
PIL http://www.pythonware.com/procts/pil/ python圖像處理
mako http://www.makotemplates.org/ python模版引擎
numpy , scipy 科學計算
matplotlib 畫圖
scrapy 爬蟲
django/tornado/web.py/web2py/uliweb/flask/twisted/bottle/cherrypy.等等 python web框架/伺服器
sh 1.08 — sh v1.08 documentation 用來運行shell 模塊的 極佳選擇
暫時記得這么多吧,不過都是我自己常用的庫 :) 。。歡迎補充
UPDATE:
A curated list of awesome Python frameworks, libraries and software.
vinta/awesome-python · GitHub
幾乎所有很贊的 python 庫,和框架都在這個列表裡。
其他的 awesome list:
bayandin/awesome-awesomeness · GitHub
Ⅳ Python實現簡單多線程任務隊列
Python實現簡單多線程任務隊列
最近我在用梯度下降演算法繪制神經網路的數據時,遇到了一些演算法性能的問題。梯度下降演算法的代碼如下(偽代碼):
defgradient_descent(): # the gradient descent code plotly.write(X, Y)
一般來說,當網路請求 plot.ly 繪圖時會阻塞等待返回,於是也會影響到其他的梯度下降函數的執行速度。
一種解決辦法是每調用一次 plotly.write 函數就開啟一個新的線程,但是這種方法感覺不是很好。 我不想用一個像 cerely(一種分布式任務隊列)一樣大而全的任務隊列框架,因為框架對於我的這點需求來說太重了,並且我的繪圖也並不需要 redis 來持久化數據。
那用什麼辦法解決呢?我在 python 中寫了一個很小的任務隊列,它可以在一個單獨的線程中調用 plotly.write函數。下面是程序代碼。
classTaskQueue(Queue.Queue):
首先我們繼承 Queue.Queue 類。從 Queue.Queue 類可以繼承 get 和 put 方法,以及隊列的行為。
def__init__(self, num_workers=1): Queue.Queue.__init__(self) self.num_workers=num_workers self.start_workers()
初始化的時候,我們可以不用考慮工作線程的數量。
defadd_task(self, task,*args,**kwargs): args=argsor() kwargs=kwargsor{} self.put((task, args, kwargs))
我們把 task, args, kwargs 以元組的形式存儲在隊列中。*args 可以傳遞數量不等的參數,**kwargs 可以傳遞命名參數。
defstart_workers(self): foriinrange(self.num_workers): t=Thread(target=self.worker) t.daemon=True t.start()
我們為每個 worker 創建一個線程,然後在後台刪除。
下面是 worker 函數的代碼:
defworker(self): whileTrue: tupl=self.get() item, args, kwargs=self.get() item(*args,**kwargs) self.task_done()
worker 函數獲取隊列頂端的任務,並根據輸入參數運行,除此之外,沒有其他的功能。下面是隊列的代碼:
我們可以通過下面的代碼測試:
defblokkah(*args,**kwargs): time.sleep(5) print「Blokkah mofo!」 q=TaskQueue(num_workers=5) foriteminrange(1): q.add_task(blokkah) q.join()# wait for all the tasks to finish. print「Alldone!」
Blokkah 是我們要做的任務名稱。隊列已經緩存在內存中,並且沒有執行很多任務。下面的步驟是把主隊列當做單獨的進程來運行,這樣主程序退出以及執行資料庫持久化時,隊列任務不會停止運行。但是這個例子很好地展示了如何從一個很簡單的小任務寫成像工作隊列這樣復雜的程序。
defgradient_descent(): # the gradient descent code queue.add_task(plotly.write, x=X, y=Y)
修改之後,我的梯度下降演算法工作效率似乎更高了。如果你很感興趣的話,可以參考下面的代碼。 classTaskQueue(Queue.Queue): def__init__(self, num_workers=1):Queue.Queue.__init__(self)self.num_workers=num_workersself.start_workers() defadd_task(self, task,*args,**kwargs):args=argsor()kwargs=kwargsor{}self.put((task, args, kwargs)) defstart_workers(self):foriinrange(self.num_workers):t=Thread(target=self.worker)t.daemon=Truet.start() defworker(self):whileTrue:tupl=self.get()item, args, kwargs=self.get()item(*args,**kwargs)self.task_done() deftests():defblokkah(*args,**kwargs):time.sleep(5)print"Blokkah mofo!" q=TaskQueue(num_workers=5) foriteminrange(10):q.add_task(blokkah) q.join()# block until all tasks are doneprint"All done!" if__name__=="__main__":tests()
Ⅵ 大型的 PHP應用 通常使用什麼應用做 消息隊列 的
一、消息隊列概述
消息隊列中間件是分布式系統中重要的組件,主要解決應用耦合,非同步消息,流量削鋒等問題。實現高性能,高可用,可伸縮和最終一致性架構。是大型分布式系統不可缺少的中間件。
目前在生產環境,使用較多的消息隊列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。
二、消息隊列應用場景
以下介紹消息隊列在實際應用中常用的使用場景。非同步處理,應用解耦,流量削鋒和消息通訊四個場景。
2.1非同步處理
場景說明:用戶注冊後,需要發注冊郵件和注冊簡訊。傳統的做法有兩種1.串列的方式;2.並行方式。
(1)串列方式:將注冊信息寫入資料庫成功後,發送注冊郵件,再發送注冊簡訊。以上三個任務全部完成後,返回給客戶端。(架構KKQ:466097527,歡迎加入)
(2)並行方式:將注冊信息寫入資料庫成功後,發送注冊郵件的同時,發送注冊簡訊。以上三個任務完成後,返回給客戶端。與串列的差別是,並行的方式可以提高處理的時間。
假設三個業務節點每個使用50毫秒鍾,不考慮網路等其他開銷,則串列方式的時間是150毫秒,並行的時間可能是100毫秒。
因為CPU在單位時間內處理的請求數是一定的,假設CPU1秒內吞吐量是100次。則串列方式1秒內CPU可處理的請求量是7次(1000/150)。並行方式處理的請求量是10次(1000/100)。
小結:如以上案例描述,傳統的方式系統的性能(並發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?
引入消息隊列,將不是必須的業務邏輯,非同步處理。改造後的架構如下:
按照以上約定,用戶的響應時間相當於是注冊信息寫入資料庫的時間,也就是50毫秒。注冊郵件,發送簡訊寫入消息隊列後,直接返回,因此寫入消息隊列的速度很快,基本可以忽略,因此用戶的響應時間可能是50毫秒。因此架構改變後,系統的吞吐量提高到每秒20 QPS。比串列提高了3倍,比並行提高了兩倍。
2.2應用解耦
場景說明:用戶下單後,訂單系統需要通知庫存系統。傳統的做法是,訂單系統調用庫存系統的介面。如下圖:
傳統模式的缺點:
1) 假如庫存系統無法訪問,則訂單減庫存將失敗,從而導致訂單失敗;
2) 訂單系統與庫存系統耦合;
如何解決以上問題呢?引入應用消息隊列後的方案,如下圖:
訂單系統:用戶下單後,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功。
庫存系統:訂閱下單的消息,採用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操作。
假如:在下單時庫存系統不能正常使用。也不影響正常下單,因為下單後,訂單系統寫入消息隊列就不再關心其他的後續操作了。實現訂單系統與庫存系統的應用解耦。
2.3流量削鋒
流量削鋒也是消息隊列中的常用場景,一般在秒殺或團搶活動中使用廣泛。
應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入消息隊列。
可以控制活動的人數;
可以緩解短時間內高流量壓垮應用;
用戶的請求,伺服器接收後,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面;
秒殺業務根據消息隊列中的請求信息,再做後續處理。
2.4日誌處理
日誌處理是指將消息隊列用在日誌處理中,比如Kafka的應用,解決大量日誌傳輸的問題。架構簡化如下:
日誌採集客戶端,負責日誌數據採集,定時寫受寫入Kafka隊列;
Kafka消息隊列,負責日誌數據的接收,存儲和轉發;
日誌處理應用:訂閱並消費kafka隊列中的日誌數據;
以下是新浪kafka日誌處理應用案例:
(1)Kafka:接收用戶日誌的消息隊列。
(2)Logstash:做日誌解析,統一成JSON輸出給Elasticsearch。
(3)Elasticsearch:實時日誌分析服務的核心技術,一個schemaless,實時的數據存儲服務,通過index組織數據,兼具強大的搜索和統計功能。
(4)Kibana:基於Elasticsearch的數據可視化組件,超強的數據可視化能力是眾多公司選擇ELK stack的重要原因。
2.5消息通訊
消息通訊是指,消息隊列一般都內置了高效的通信機制,因此也可以用在純的消息通訊。比如實現點對點消息隊列,或者聊天室等。
點對點通訊:
客戶端A和客戶端B使用同一隊列,進行消息通訊。
聊天室通訊:
客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發布和接收。實現類似聊天室效果。
以上實際是消息隊列的兩種消息模式,點對點或發布訂閱模式。模型為示意圖,供參考。
三、消息中間件示例
3.1電商系統
消息隊列採用高可用,可持久化的消息中間件。比如Active MQ,Rabbit MQ,Rocket Mq。(1)應用將主幹邏輯處理完成後,寫入消息隊列。消息發送是否成功可以開啟消息的確認模式。(消息隊列返回消息接收成功狀態後,應用再返回,這樣保障消息的完整性)
(2)擴展流程(發簡訊,配送處理)訂閱隊列消息。採用推或拉的方式獲取消息並處理。
(3)消息將應用解耦的同時,帶來了數據一致性問題,可以採用最終一致性方式解決。比如主數據寫入資料庫,擴展應用根據消息隊列,並結合資料庫方式實現基於消息隊列的後續處理。
3.2日誌收集系統
分為Zookeeper注冊中心,日誌收集客戶端,Kafka集群和Storm集群(OtherApp)四部分組成。
Zookeeper注冊中心,提出負載均衡和地址查找服務;
日誌收集客戶端,用於採集應用系統的日誌,並將數據推送到kafka隊列;
四、JMS消息服務
講消息隊列就不得不提JMS 。JMS(Java Message Service,Java消息服務)API是一個消息服務的標准/規范,允許應用程序組件基於JavaEE平台創建、發送、接收和讀取消息。它使分布式通信耦合度更低,消息服務更加可靠以及非同步性。
在EJB架構中,有消息bean可以無縫的與JM消息服務集成。在J2EE架構模式中,有消息服務者模式,用於實現消息與應用直接的解耦。
4.1消息模型
在JMS標准中,有兩種消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。
4.1.1 P2P模式
P2P模式包含三個角色:消息隊列(Queue),發送者(Sender),接收者(Receiver)。每個消息都被發送到一個特定的隊列,接收者從隊列中獲取消息。隊列保留著消息,直到他們被消費或超時。
P2P的特點
每個消息只有一個消費者(Consumer)(即一旦被消費,消息就不再在消息隊列中)
發送者和接收者之間在時間上沒有依賴性,也就是說當發送者發送了消息之後,不管接收者有沒有正在運行,它不會影響到消息被發送到隊列
接收者在成功接收消息之後需向隊列應答成功
如果希望發送的每個消息都會被成功處理的話,那麼需要P2P模式。(架構KKQ:466097527,歡迎加入)
4.1.2 Pub/sub模式
包含三個角色主題(Topic),發布者(Publisher),訂閱者(Subscriber) 。多個發布者將消息發送到Topic,系統將這些消息傳遞給多個訂閱者。
Pub/Sub的特點
每個消息可以有多個消費者
發布者和訂閱者之間有時間上的依賴性。針對某個主題(Topic)的訂閱者,它必須創建一個訂閱者之後,才能消費發布者的消息。
為了消費消息,訂閱者必須保持運行的狀態。
為了緩和這樣嚴格的時間相關性,JMS允許訂閱者創建一個可持久化的訂閱。這樣,即使訂閱者沒有被激活(運行),它也能接收到發布者的消息。
如果希望發送的消息可以不被做任何處理、或者只被一個消息者處理、或者可以被多個消費者處理的話,那麼可以採用Pub/Sub模型。
4.2消息消費
在JMS中,消息的產生和消費都是非同步的。對於消費來說,JMS的消息者可以通過兩種方式來消費消息。
(1)同步
訂閱者或接收者通過receive方法來接收消息,receive方法在接收到消息之前(或超時之前)將一直阻塞;
(2)非同步
訂閱者或接收者可以注冊為一個消息監聽器。當消息到達之後,系統自動調用監聽器的onMessage方法。
JNDI:Java命名和目錄介面,是一種標準的Java命名系統介面。可以在網路上查找和訪問服務。通過指定一個資源名稱,該名稱對應於資料庫或命名服務中的一個記錄,同時返回資源連接建立所必須的信息。
JNDI在JMS中起到查找和訪問發送目標或消息來源的作用。(架構KKQ:466097527,歡迎加入)
4.3JMS編程模型
(1) ConnectionFactory
創建Connection對象的工廠,針對兩種不同的jms消息模型,分別有QueueConnectionFactory和TopicConnectionFactory兩種。可以通過JNDI來查找ConnectionFactory對象。
(2) Destination
Destination的意思是消息生產者的消息發送目標或者說消息消費者的消息來源。對於消息生產者來說,它的Destination是某個隊列(Queue)或某個主題(Topic);對於消息消費者來說,它的Destination也是某個隊列或主題(即消息來源)。
所以,Destination實際上就是兩種類型的對象:Queue、Topic可以通過JNDI來查找Destination。
(3) Connection
Connection表示在客戶端和JMS系統之間建立的鏈接(對TCP/IP socket的包裝)。Connection可以產生一個或多個Session。跟ConnectionFactory一樣,Connection也有兩種類型:QueueConnection和TopicConnection。
(4) Session
Session是操作消息的介面。可以通過session創建生產者、消費者、消息等。Session提供了事務的功能。當需要使用session發送/接收多個消息時,可以將這些發送/接收動作放到一個事務中。同樣,也分QueueSession和TopicSession。
(5) 消息的生產者
消息生產者由Session創建,並用於將消息發送到Destination。同樣,消息生產者分兩種類型:QueueSender和TopicPublisher。可以調用消息生產者的方法(send或publish方法)發送消息。
(6) 消息消費者
消息消費者由Session創建,用於接收被發送到Destination的消息。兩種類型:QueueReceiver和TopicSubscriber。可分別通過session的createReceiver(Queue)或createSubscriber(Topic)來創建。當然,也可以session的creatDurableSubscriber方法來創建持久化的訂閱者。
(7) MessageListener
消息監聽器。如果注冊了消息監聽器,一旦消息到達,將自動調用監聽器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一種MessageListener。
深入學習JMS對掌握JAVA架構,EJB架構有很好的幫助,消息中間件也是大型分布式系統必須的組件。本次分享主要做全局性介紹,具體的深入需要大家學習,實踐,總結,領會。
五、常用消息隊列
一般商用的容器,比如WebLogic,JBoss,都支持JMS標准,開發上很方便。但免費的比如Tomcat,Jetty等則需要使用第三方的消息中間件。本部分內容介紹常用的消息中間件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他們的特點。
5.1 ActiveMQ
ActiveMQ 是Apache出品,最流行的,能力強勁的開源消息匯流排。ActiveMQ 是一個完全支持JMS1.1和J2EE 1.4規范的 JMS Provider實現,盡管JMS規范出台已經是很久的事情了,但是JMS在當今的J2EE應用中間仍然扮演著特殊的地位。
ActiveMQ特性如下:
⒈ 多種語言和協議編寫客戶端。語言: Java,C,C++,C#,Ruby,Perl,Python,PHP。應用協議: OpenWire,Stomp REST,WS Notification,XMPP,AMQP
⒉ 完全支持JMS1.1和J2EE 1.4規范 (持久化,XA消息,事務)
⒊ 對spring的支持,ActiveMQ可以很容易內嵌到使用Spring的系統裡面去,而且也支持Spring2.0的特性
⒋ 通過了常見J2EE伺服器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的測試,其中通過JCA 1.5 resource adaptors的配置,可以讓ActiveMQ可以自動的部署到任何兼容J2EE 1.4 商業伺服器上
⒌ 支持多種傳送協議:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA
⒍ 支持通過JDBC和journal提供高速的消息持久化
⒎ 從設計上保證了高性能的集群,客戶端-伺服器,點對點
⒏ 支持Ajax
⒐ 支持與Axis的整合
⒑ 可以很容易得調用內嵌JMS provider,進行測試
5.2 RabbitMQ
RabbitMQ是流行的開源消息隊列系統,用erlang語言開發。RabbitMQ是AMQP(高級消息隊列協議)的標准實現。支持多種客戶端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用於在分布式系統中存儲轉發消息,在易用性、擴展性、高可用性等方面表現不俗。
幾個重要概念:
Broker:簡單來說就是消息隊列伺服器實體。
Exchange:消息交換機,它指定消息按什麼規則,路由到哪個隊列。
Queue:消息隊列載體,每個消息都會被投入到一個或多個隊列。
Binding:綁定,它的作用就是把exchange和queue按照路由規則綁定起來。
Routing Key:路由關鍵字,exchange根據這個關鍵字進行消息投遞。
vhost:虛擬主機,一個broker里可以開設多個vhost,用作不同用戶的許可權分離。
procer:消息生產者,就是投遞消息的程序。
consumer:消息消費者,就是接受消息的程序。
channel:消息通道,在客戶端的每個連接里,可建立多個channel,每個channel代表一個會話任務。
消息隊列的使用過程,如下:
(1)客戶端連接到消息隊列伺服器,打開一個channel。
(2)客戶端聲明一個exchange,並設置相關屬性。
(3)客戶端聲明一個queue,並設置相關屬性。
(4)客戶端使用routing key,在exchange和queue之間建立好綁定關系。
(5)客戶端投遞消息到exchange。
exchange接收到消息後,就根據消息的key和已經設置的binding,進行消息路由,將消息投遞到一個或多個隊列里。
5.3 ZeroMQ
號稱史上最快的消息隊列,它實際類似於Socket的一系列介面,他跟Socket的區別是:普通的socket是端到端的(1:1的關系),而ZMQ卻是可以N:M 的關系,人們對BSD套接字的了解較多的是點對點的連接,點對點連接需要顯式地建立連接、銷毀連接、選擇協議(TCP/UDP)和處理錯誤等,而ZMQ屏蔽了這些細節,讓你的網路編程更為簡單。ZMQ用於node與node間的通信,node可以是主機或者是進程。
引用官方的說法: 「ZMQ(以下ZeroMQ簡稱ZMQ)是一個簡單好用的傳輸層,像框架一樣的一個socket library,他使得Socket編程更加簡單、簡潔和性能更高。是一個消息處理隊列庫,可在多個線程、內核和主機盒之間彈性伸縮。ZMQ的明確目標是「成為標准網路協議棧的一部分,之後進入Linux內核」。現在還未看到它們的成功。但是,它無疑是極具前景的、並且是人們更加需要的「傳統」BSD套接字之上的一 層封裝。ZMQ讓編寫高性能網路應用程序極為簡單和有趣。」
特點是:
高性能,非持久化;
跨平台:支持Linux、Windows、OS X等。
多語言支持; C、C++、Java、.NET、Python等30多種開發語言。
可單獨部署或集成到應用中使用;
可作為Socket通信庫使用。
與RabbitMQ相比,ZMQ並不像是一個傳統意義上的消息隊列伺服器,事實上,它也根本不是一個伺服器,更像一個底層的網路通訊庫,在Socket API之上做了一層封裝,將網路通訊、進程通訊和線程通訊抽象為統一的API介面。支持「Request-Reply 「,」Publisher-Subscriber「,」Parallel Pipeline」三種基本模型和擴展模型。
ZeroMQ高性能設計要點:
1、無鎖的隊列模型
對於跨線程間的交互(用戶端和session)之間的數據交換通道pipe,採用無鎖的隊列演算法CAS;在pipe兩端注冊有非同步事件,在讀或者寫消息到pipe的時,會自動觸發讀寫事件。
2、批量處理的演算法
對於傳統的消息處理,每個消息在發送和接收的時候,都需要系統的調用,這樣對於大量的消息,系統的開銷比較大,zeroMQ對於批量的消息,進行了適應性的優化,可以批量的接收和發送消息。
3、多核下的線程綁定,無須CPU切換
區別於傳統的多線程並發模式,信號量或者臨界區, zeroMQ充分利用多核的優勢,每個核綁定運行一個工作者線程,避免多線程之間的CPU切換開銷。
5.4 Kafka
Kafka是一種高吞吐量的分布式發布訂閱消息系統,它可以處理消費者規模的網站中的所有動作流數據。 這種動作(網頁瀏覽,搜索和其他用戶的行動)是在現代網路上的許多社會功能的一個關鍵因素。 這些數據通常是由於吞吐量的要求而通過處理日誌和日誌聚合來解決。 對於像Hadoop的一樣的日誌數據和離線分析系統,但又要求實時處理的限制,這是一個可行的解決方案。Kafka的目的是通過Hadoop的並行載入機制來統一線上和離線的消息處理,也是為了通過集群機來提供實時的消費。
Kafka是一種高吞吐量的分布式發布訂閱消息系統,有如下特性:
通過O(1)的磁碟數據結構提供消息的持久化,這種結構對於即使數以TB的消息存儲也能夠保持長時間的穩定性能。(文件追加的方式寫入數據,過期的數據定期刪除)
高吞吐量:即使是非常普通的硬體Kafka也可以支持每秒數百萬的消息。
支持通過Kafka伺服器和消費機集群來分區消息。
支持Hadoop並行數據載入。
Kafka相關概念
Broker
Kafka集群包含一個或多個伺服器,這種伺服器被稱為broker[5]
Topic
每條發布到Kafka集群的消息都有一個類別,這個類別被稱為Topic。(物理上不同Topic的消息分開存儲,邏輯上一個Topic的消息雖然保存於一個或多個broker上但用戶只需指定消息的Topic即可生產或消費數據而不必關心數據存於何處)
Partition
Parition是物理上的概念,每個Topic包含一個或多個Partition.
Procer
負責發布消息到Kafka broker
Consumer
消息消費者,向Kafka broker讀取消息的客戶端。
Consumer Group
每個Consumer屬於一個特定的Consumer Group(可為每個Consumer指定group name,若不指定group name則屬於默認的group)。
一般應用在大數據日誌處理或對實時性(少量延遲),可靠性(少量丟數據)要求稍低的場景使用。
Ⅶ 一般項目為了解決什麼問題而使用redis
redis是內存資料庫,訪問速度非常快,所以能夠解決的也都是這些緩存類型的問題,如下:
1、會話緩存(Session Cache)
最常用的一種使用Redis的情景是會話緩存(session cache)。用Redis緩存會話比其他存儲(如Memcached)的優勢在於:Redis提供持久化。當維護一個不是嚴格要求一致性的緩存時,如果用戶的購物車信息全部丟失,大部分人都會不高興的,現在,他們還會這樣嗎?
幸運的是,隨著 Redis 這些年的改進,很容易找到怎麼恰當的使用Redis來緩存會話的文檔。甚至廣為人知的商業平台Magento也提供Redis的插件。
2、全頁緩存(FPC)
除基本的會話token之外,Redis還提供很簡便的FPC平台。回到一致性問題,即使重啟了Redis實例,因為有磁碟的持久化,用戶也不會看到頁面載入速度的下降,這是一個極大改進,類似PHP本地FPC。
再次以Magento為例,Magento提供一個插件來使用Redis作為全頁緩存後端。
此外,對WordPress的用戶來說,Pantheon有一個非常好的插件 wp-redis,這個插件能幫助你以最快速度載入你曾瀏覽過的頁面。
3、隊列
Reids在內存存儲引擎領域的一大優點是提供 list 和 set 操作,這使得Redis能作為一個很好的消息隊列平台來使用。Redis作為隊列使用的操作,就類似於本地程序語言(如Python)對 list 的 push/pop 操作。
Ⅷ python分布式爬蟲是什麼意思
一、分布式爬蟲架構
在了解分布式爬蟲架構之前,首先回顧一下Scrapy的架構,如下圖所示。
我們需要做的就是在多台主機上同時運行爬蟲任務協同爬取,而協同爬取的前提就是共享爬取隊列。這樣各台主機就不需要各自維護爬取隊列,而是從共享爬取隊列存取Request。但是各台主機還是有各自的Scheler和Downloader,所以調度和下載功能分別完成。如果不考慮隊列存取性能消耗,爬取效率還是會成倍提高。
二、維護爬取隊列
那麼這個隊列用什麼來維護?首先需要考慮的就是性能問題。我們自然想到的是基於內存存儲的Redis,它支持多種數據結構,例如列表(List)、集合(Set)、有序集合(Sorted Set)等,存取的操作也非常簡單。
Redis支持的這幾種數據結構存儲各有優點。
列表有lpush()、lpop()、rpush()、rpop()方法,我們可以用它來實現先進先出式爬取隊列,也可以實現先進後出棧式爬取隊列。
集合的元素是無序的且不重復的,這樣我們可以非常方便地實現隨機排序且不重復的爬取隊列。
有序集合帶有分數表示,而Scrapy的Request也有優先順序的控制,我們可以用它來實現帶優先順序調度的隊列。
我們需要根據具體爬蟲的需求來靈活選擇不同的隊列。
三、如何去重
Scrapy有自動去重,它的去重使用了Python中的集合。這個集合記錄了Scrapy中每個Request的指紋,這個指紋實際上就是Request的散列值。我們可以看看Scrapy的源代碼,如下所示:
importhashlib
defrequest_fingerprint(request, include_headers=None):
ifinclude_headers:
include_headers = tuple(to_bytes(h.lower())
forhinsorted(include_headers))
cache = _fingerprint_cache.setdefault(request, {})
ifinclude_headersnotincache:
fp = hashlib.sha1()
fp.update(to_bytes(request.method))
fp.update(to_bytes(canonicalize_url(request.url)))
fp.update(request.bodyorb'')
ifinclude_headers:
forhdrininclude_headers:
ifhdrinrequest.headers:
fp.update(hdr)
forvinrequest.headers.getlist(hdr):
fp.update(v)
cache[include_headers] = fp.hexdigest()
returncache[include_headers]
request_fingerprint()就是計算Request指紋的方法,其方法內部使用的是hashlib的sha1()方法。計算的欄位包括Request的Method、URL、Body、Headers這幾部分內容,這里只要有一點不同,那麼計算的結果就不同。計算得到的結果是加密後的字元串,也就是指紋。每個Request都有獨有的指紋,指紋就是一個字元串,判定字元串是否重復比判定Request對象是否重復容易得多,所以指紋可以作為判定Request是否重復的依據。
那麼我們如何判定重復呢?Scrapy是這樣實現的,如下所示:
def__init__(self):
self.fingerprints = set()
defrequest_seen(self, request):
fp = self.request_fingerprint(request)
iffpinself.fingerprints:
returnTrue
self.fingerprints.add(fp)
在去重的類RFPDupeFilter中,有一個request_seen()方法,這個方法有一個參數request,它的作用就是檢測該Request對象是否重復。這個方法調用request_fingerprint()獲取該Request的指紋,檢測這個指紋是否存在於fingerprints變數中,而fingerprints是一個集合,集合的元素都是不重復的。如果指紋存在,那麼就返回True,說明該Request是重復的,否則這個指紋加入到集合中。如果下次還有相同的Request傳遞過來,指紋也是相同的,那麼這時指紋就已經存在於集合中,Request對象就會直接判定為重復。這樣去重的目的就實現了。
Scrapy的去重過程就是,利用集合元素的不重復特性來實現Request的去重。
對於分布式爬蟲來說,我們肯定不能再用每個爬蟲各自的集合來去重了。因為這樣還是每個主機單獨維護自己的集合,不能做到共享。多台主機如果生成了相同的Request,只能各自去重,各個主機之間就無法做到去重了。
那麼要實現去重,這個指紋集合也需要是共享的,Redis正好有集合的存儲數據結構,我們可以利用Redis的集合作為指紋集合,那麼這樣去重集合也是利用Redis共享的。每台主機新生成Request之後,把該Request的指紋與集合比對,如果指紋已經存在,說明該Request是重復的,否則將Request的指紋加入到這個集合中即可。利用同樣的原理不同的存儲結構我們也實現了分布式Reqeust的去重。
四、防止中斷
在Scrapy中,爬蟲運行時的Request隊列放在內存中。爬蟲運行中斷後,這個隊列的空間就被釋放,此隊列就被銷毀了。所以一旦爬蟲運行中斷,爬蟲再次運行就相當於全新的爬取過程。
要做到中斷後繼續爬取,我們可以將隊列中的Request保存起來,下次爬取直接讀取保存數據即可獲取上次爬取的隊列。我們在Scrapy中指定一個爬取隊列的存儲路徑即可,這個路徑使用JOB_DIR變數來標識,我們可以用如下命令來實現:
scrapy crawl spider -s JOB_DIR=crawls/spider
更加詳細的使用方法可以參見官方文檔,鏈接為:https://doc.scrapy.org/en/latest/topics/jobs.html。
在Scrapy中,我們實際是把爬取隊列保存到本地,第二次爬取直接讀取並恢復隊列即可。那麼在分布式架構中我們還用擔心這個問題嗎?不需要。因為爬取隊列本身就是用資料庫保存的,如果爬蟲中斷了,資料庫中的Request依然是存在的,下次啟動就會接著上次中斷的地方繼續爬取。
所以,當Redis的隊列為空時,爬蟲會重新爬取;當Redis的隊列不為空時,爬蟲便會接著上次中斷之處繼續爬取。
五、架構實現
我們接下來就需要在程序中實現這個架構了。首先實現一個共享的爬取隊列,還要實現去重的功能。另外,重寫一個Scheer的實現,使之可以從共享的爬取隊列存取Request。
幸運的是,已經有人實現了這些邏輯和架構,並發布成叫Scrapy-Redis的Python包。接下來,我們看看Scrapy-Redis的源碼實現,以及它的詳細工作原理