當前位置:首頁 » 編程語言 » python語義分析

python語義分析

發布時間: 2024-08-07 03:00:57

『壹』 python主要是做什麼

在我看來,Python 可以做任何事情。無論是從入門級選手到專業級選手都在做的爬蟲,還是Web 程序開發、桌面程序開發還是科學計
算、圖像處理,Python都可以勝任。
Python為我們提供了非常完善的基礎代碼庫,覆蓋了網路、文件、GUI、資料庫、文本等大量內容,被形象地稱作「內置電池(Batteries
included)」。用Python開發,許多功能不必從零編寫,直接使用現成的即可。
除了內置的庫外,Python還有大量的第三方庫,也就是別人開發的,供你直接使用的東西。當然,如果你開發的代碼通過很好的封裝,
也可以作為第三方庫給別人使用。
許多大型網站就是用Python開發的,例如YouTube、Instagram,還有國內的豆瓣。很多大公司,包括Google、Yahoo等,甚至
NASA(美國航空航天局)都大量地使用Python。
龜叔給Python的定位是「優雅」、「明確」、「簡單」,所以Python程序看上去總是簡單易懂,初學者學Python,不但入門容易,而且
將來深入下去,可以編寫那些非常非常復雜的程序。
總的來說,Python的哲學就是簡單優雅,盡量寫容易看明白的代碼,盡量寫少的代碼。如果一個資深程序員向你炫耀他寫的晦澀難懂、
動不動就幾萬行的代碼,你可以盡情地嘲笑他。
python學習網,免費的python學習網站,歡迎在線學習!

『貳』 0基礎自學python,有入門書籍推薦下么

AlphaGo 都在使用的 Python 語言,是最接近 AI 的編程語言。

教育部考試中心近日發布了「關於全國計算機等級(NCRE)體系調整」的通知,決定自2018年3月起,在全國計算機二級考試中加入了「Python語言程序設計」科目。

9個月前,浙江省信息技術課程改革方案已經出台,Python確定進入浙江省信息技術教材,從2018年起浙江省信息技術教材編程語言將會從vb更換為Python。

小學生都開始學Python了,天吶擼,學習Python看完這些准沒錯。

安利一波書單

Python入門

Python數據分析》

作者: 【印尼】Ivan Idris

Python是一種多范型編程語言,既適用於面向對象的應用開發,又適合函數式設計模式。Python已經成為數據科學家進行數據分析、可視化以及機器學習的一種理想編程語言,它能幫助你快速提升工作效率。

本書將會帶領新手熟悉Python數據分析相關領域的方方面面,從數據檢索、清洗、操作、可視化、存儲到高級分析和建模。同時,本書著重講解一系列開源的Python模塊,諸如NumPy、SciPy、matplotlib、pandas、IPython、 Cython、scikit-learn和NLTK等。此外,本書還介紹了數據可視化、信號處理、時間序列分析、資料庫、預測性分析和機器學習等主題。通過閱讀本書,你將華麗變身數據分析高手。

『叄』 python的推薦書籍有哪些

推薦的幾本Python入門自學到精通必看的書籍吧~

1、《「笨辦法」學Python》

為什麼把它作為推薦給Python入門自學者的第一本書?因為它足夠有趣吸引人。一開始我們都是憑著興趣學習的,如果在剛剛開始學習的時候,就看深奧難讀的書,很容易就從入門到放棄。而且這本書里每一章知識講完後,都會配有相應的練習小題,幫助初學者在學中練,練中學,進一步鞏固相關知識點。總之,這本書以習題的方式引導學習者一步一步學習編程,從簡單的列印一直講授到完整項目的實現,讓初學者從基礎的編程技術入手,最終體驗到軟體開發的基本過程。可以說,這本書是零基礎入門Python的不二之選!

2、《Python快速編程入門》

這本書是一本Python基礎教程,因此全部內容定位於Python的基本知識、語法、函數、面向對象等基礎性內容。在夯實基礎後,該書後一章設置了游戲開發的綜合訓練,幫助初學者更好掌握相關知識。除此之外,本書附有配套視頻、源代碼、習題、教學課件等資源。總之,

本書既可作為高等院校本、專科計算機相關專業的程序設計課程教材,也可作為Python編程基礎的學習教材,是一本適合廣大編程開發初學者的入門級教材。

3、《Python高手之路(第3版) 》

本書不適合零基礎學習者,適合有一定Python基礎的學習者閱讀。因為該書完全從實戰的角度出發,介紹了需要系統掌握的Python知識。更為難得的是,本書結合了Python在OpenStack中的應用進行講解,非常具有實戰指導意義。此外,本書還涉及了很多高級主題,如性能優化、插件化結構的設計與架構、Python
3的支持策略等。因此,本書適合初中級層次的Python程序員閱讀和參考。

4、《Python演算法教程》

本書最大的優點簡單概括起來就是知識點清晰,語言簡潔。書中用Python語言來講解演算法的分析和設計,主要關注經典的演算法,幫助讀者理解基本演算法問題和解決問題打下很好的基礎。本書概念和知識點講解清晰,語言簡潔,因此適合對Python演算法感興趣的初中級用戶閱讀和自學,也適合高等院校的計算機系學生作為參考教材來閱讀。

5、《Python核心編程(第3版)》

本書涵蓋了成為一名技術全面的Python開發人員所需的一切內容,因此是每個想要精通Python的工程師必須要學習和了解的內容。在本書中,Python開發人員兼企業培訓師Wesley
Chun會幫助學習者將Python技能提升到更高的水平。而且書中講解了應用開發相關的多個領域,可以幫助讀者立即應用到項目開發中。

6、《精通Python自然語言處理》

眾做周知,自然語言處理是計算語言學和人工智慧之中與人機交互相關的領域之一。本書是學習自然語言處理的一本綜合學習指南,該書介紹了如何用Python實現各種NLP任務,以幫助讀者創建基於真實生活應用的項目。全書共10章,分別涉及字元串操作、統計語言建模、形態學、詞性標注、語法解析、語義分析、情感分析、信息檢索、語篇分析和NLP系統評估等主題。本書適合熟悉Python語言並對自然語言處理開發有一定了解和興趣的讀者閱讀參考。

以上就是推薦的Python入門到精通的所有書籍,相信總有一本適合你。但想要快速入門Python開發,僅靠看書怎麼夠,畢竟編程最重要的就是練習。

對於Python開發有興趣的小夥伴們,不妨先從看看Python開發書籍開始入門!B站上有很多的Python教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

『肆』 Python中文分詞的原理你知道嗎

中文分詞,即 Chinese Word Segmentation,即將一個漢字序列進行切分,得到一個個單獨的詞。表面上看,分詞其實就是那麼回事,但分詞效果好不好對信息檢索、實驗結果還是有很大影響的,同時分詞的背後其實是涉及各種各樣的演算法的。

中文分詞與英文分詞有很大的不同,對英文而言,一個單詞就是一個詞,而漢語是以字為基本的書寫單位,詞語之間沒有明顯的區分標記,需要人為切分。根據其特點,可以把分詞演算法分為四大類:

基於規則的分詞方法

基於統計的分詞方法

基於語義的分詞方法

基於理解的分詞方法

下面我們對這幾種方法分別進行總結。

基於規則的分詞方法

這種方法又叫作機械分詞方法、基於字典的分詞方法,它是按照一定的策略將待分析的漢字串與一個「充分大的」機器詞典中的詞條進行匹配。若在詞典中找到某個字元串,則匹配成功。該方法有三個要素,即分詞詞典、文本掃描順序和匹配原則。文本的掃描順序有正向掃描、逆向掃描和雙向掃描。匹配原則主要有最大匹配、最小匹配、逐詞匹配和最佳匹配。

最大匹配法(MM)。基本思想是:假設自動分詞詞典中的最長詞條所含漢字的個數為 i,則取被處理材料當前字元串序列中的前 i 個字元作為匹配欄位,查找分詞詞典,若詞典中有這樣一個 i 字詞,則匹配成功,匹配欄位作為一個詞被切分出來;若詞典中找不到這樣的一個 i 字詞,則匹配失敗,匹配欄位去掉最後一個漢字,剩下的字元作為新的匹配欄位,再進行匹配,如此進行下去,直到匹配成功為止。統計結果表明,該方法的錯誤率 為 1/169。

逆向最大匹配法(RMM)。該方法的分詞過程與 MM 法相同,不同的是從句子(或文章)末尾開始處理,每次匹配不成功時去掉的是前面的一個漢字。統計結果表明,該方法的錯誤率為 1/245。

逐詞遍歷法。把詞典中的詞按照由長到短遞減的順序逐字搜索整個待處理的材料,一直到把全部的詞切分出來為止。不論分詞詞典多大,被處理的材料多麼小,都得把這個分詞詞典匹配一遍。

設立切分標志法。切分標志有自然和非自然之分。自然切分標志是指文章中出現的非文字元號,如標點符號等;非自然標志是利用詞綴和不構成詞的詞(包 括單音詞、復音節詞以及象聲詞等)。設立切分標志法首先收集眾多的切分標志,分詞時先找出切分標志,把句子切分為一些較短的欄位,再用 MM、RMM 或其它的方法進行細加工。這種方法並非真正意義上的分詞方法,只是自動分詞的一種前處理方式而已,它要額外消耗時間掃描切分標志,增加存儲空間存放那些非 自然切分標志。

最佳匹配法(OM)。此法分為正向的最佳匹配法和逆向的最佳匹配法,其出發點是:在詞典中按詞頻的大小順序排列詞條,以求縮短對分詞詞典的檢索時 間,達到最佳效果,從而降低分詞的時間復雜度,加快分詞速度。實質上,這種方法也不是一種純粹意義上的分詞方法,它只是一種對分詞詞典的組織方式。OM 法的分詞詞典每條詞的前面必須有指明長度的數據項,所以其空間復雜度有所增加,對提高分詞精度沒有影響,分詞處理的時間復雜度有所降低。

此種方法優點是簡單,易於實現。但缺點有很多:匹配速度慢;存在交集型和組合型歧義切分問題;詞本身沒有一個標準的定義,沒有統一標準的詞集;不同詞典產生的歧義也不同;缺乏自學習的智能性。

基於統計的分詞方法

該方法的主要思想:詞是穩定的組合,因此在上下文中,相鄰的字同時出現的次數越多,就越有可能構成一個詞。因此字與字相鄰出現的概率或頻率能較好地反映成詞的可信度。可以對訓練文本中相鄰出現的各個字的組合的頻度進行統計,計算它們之間的互現信息。互現信息體現了漢字之間結合關系的緊密程度。當緊密程 度高於某一個閾值時,便可以認為此字組可能構成了一個詞。該方法又稱為無字典分詞。

該方法所應用的主要的統計模型有:N 元文法模型(N-gram)、隱馬爾可夫模型(Hiden Markov Model,HMM)、最大熵模型(ME)、條件隨機場模型(Conditional Random Fields,CRF)等。

在實際應用中此類分詞演算法一般是將其與基於詞典的分詞方法結合起來,既發揮匹配分詞切分速度快、效率高的特點,又利用了無詞典分詞結合上下文識別生詞、自動消除歧義的優點。

基於語義的分詞方法

語義分詞法引入了語義分析,對自然語言自身的語言信息進行更多的處理,如擴充轉移網路法、知識分詞語義分析法、鄰接約束法、綜合匹配法、後綴分詞法、特徵詞庫法、矩陣約束法、語法分析法等。

擴充轉移網路法

該方法以有限狀態機概念為基礎。有限狀態機只能識別正則語言,對有限狀態機作的第一次擴充使其具有遞歸能力,形成遞歸轉移網路 (RTN)。在RTN 中,弧線上的標志不僅可以是終極符(語言中的單詞)或非終極符(詞類),還可以調用另外的子網路名字分非終極符(如字或字串的成詞條件)。這樣,計算機在 運行某個子網路時,就可以調用另外的子網路,還可以遞歸調用。詞法擴充轉移網路的使用, 使分詞處理和語言理解的句法處理階段交互成為可能,並且有效地解決了漢語分詞的歧義。

矩陣約束法

其基本思想是:先建立一個語法約束矩陣和一個語義約束矩陣, 其中元素分別表明具有某詞性的詞和具有另一詞性的詞相鄰是否符合語法規則, 屬於某語義類的詞和屬於另一詞義類的詞相鄰是否符合邏輯,機器在切分時以之約束分詞結果。

基於理解的分詞方法

基於理解的分詞方法是通過讓計算機模擬人對句子的理解,達到識別詞的效果。其基本思想就是在分詞的同時進行句法、語義分析,利用句法信息和語義信息來處理歧義現象。它通常包括三個部分:分詞子系統、句法語義子系統、總控部分。在總控部分的協調下,分詞子系統可以獲得有關詞、句子等的句法和語義信息來對分詞歧義進行判斷,即它模擬了人對句子的理解過程。這種分詞方法需要使用大量的語言知識和信息。目前基於理解的分詞方法主要有專家系統分詞法和神經網路分詞法等。

專家系統分詞法

從專家系統角度把分詞的知識(包括常識性分詞知識與消除歧義切分的啟發性知識即歧義切分規則)從實現分詞過程的推理機中獨立出來,使知識庫的維護與推理機的實現互不幹擾,從而使知識庫易於維護和管理。它還具有發現交集歧義欄位和多義組合歧義欄位的能力和一定的自學習功能。

神經網路分詞法

該方法是模擬人腦並行,分布處理和建立數值計算模型工作的。它將分詞知識所分散隱式的方法存入神經網路內部,通過自學習和訓練修改內部權值,以達到正確的分詞結果,最後給出神經網路自動分詞結果,如使用 LSTM、GRU 等神經網路模型等。

神經網路專家系統集成式分詞法

該方法首先啟動神經網路進行分詞,當神經網路對新出現的詞不能給出准確切分時,激活專家系統進行分析判斷,依據知識庫進行推理,得出初步分析,並啟動學習機制對神經網路進行訓練。該方法可以較充分發揮神經網路與專家系統二者優勢,進一步提高分詞效率。

以上便是對分詞演算法的基本介紹。

熱點內容
手機的媒體存儲 發布:2024-11-25 20:29:42 瀏覽:264
安卓如何關閉手機桌面 發布:2024-11-25 20:24:37 瀏覽:700
腳本也違法嗎 發布:2024-11-25 20:24:24 瀏覽:304
phpeol 發布:2024-11-25 20:16:01 瀏覽:92
您所訪問的頁面升級 發布:2024-11-25 20:00:56 瀏覽:597
快手編程師 發布:2024-11-25 20:00:55 瀏覽:148
androidadt下載最新 發布:2024-11-25 19:47:29 瀏覽:353
我的世界如何強制獲得伺服器管理員許可權 發布:2024-11-25 19:39:13 瀏覽:604
批量上傳圖片控制項 發布:2024-11-25 19:27:12 瀏覽:766
黑馬java就業班 發布:2024-11-25 19:10:54 瀏覽:715