當前位置:首頁 » 編程語言 » jstopython

jstopython

發布時間: 2024-07-30 22:08:54

㈠ 有哪些炫酷的代碼編輯器

題主所說的炫酷的代碼編輯器,也許更多的只是主題的絢麗吧,下面將一些個人常用的代碼編輯器做一總結。題主已經說了編輯器,大家就不用在推薦VisualStudio、Eclipse之類的編譯器了。

1)VSCode

微軟出品,絕對的好用,跨平台支持,開源,易用性高。自己也是最近從之前常用的sublime切換到了VSCode,各方面還是很不錯的。很多習慣了的sublime快捷鍵可以很方便的無縫切換到沒稿VSCode。為什麼沒有推乎吵薦atom呢?理由很簡單,同作為使用JS開發的軟體,效率簡直甩atom幾條街。實在是無法忍受atom的卡頓。

2)Sublime

號稱最性感的編輯器,使用python開發,俗稱「SB」編輯器,不過其效率也是杠杠的,插件支持完善,對中文的支持可能需要我們單獨安裝插件ConvertToUTF8。雖然它是收費的,不過我們可以很方便的在網上找到注冊碼。和前文提到的VSCode相同,它也是一個跨平台的編輯器,同時支持Windows、linux、MacOSX等操作系統。

3)Vim

號稱編輯器之神,搭配各種插件可以達到很好的效果。GVim是其在Windows平台下的特定版本,搭配YouCompleteMe插件來寫代碼,功能簡直爽的不要不要的。

4)Notepad++

Notepad++是免費軟體,可以免費使用,自帶中文,支持眾多計算機程序語言,支持語法高亮,也有語法折疊功能,比windows自帶的記事本功能不知道歲察侍強大了多少倍。

5)UltraEdit

據稱是黑客必備編輯器之一,可以編輯文本、十六進制、ASCII碼,該軟體又附有HTML標簽顏色顯示、搜尋替換及無限制還原功能,可修改EXE或DLL文件。下面是一張使用UltraEdit打開exe查看其內部數據的截圖。

最後,就不再推薦Emacs了,原因很簡單,這玩意上手太過陡峭,自己一直無緣使用,如果你有更好的編輯器推薦,歡迎討論。

㈡ 前端js 後端python 如何用ajax下載文件

前端js改成這樣試試:
var form = $("<form></form>").attr("action", "/cgi-bin/rpt_data_toExcel.py").attr("method", "post");
form.append($("<input></input>").attr("type", "hidden").attr("name", "fileName").attr("value", "results.xls"));
form.appendTo('body').submit().remove();

㈢ 初學者怎麼學習Python

初學者、零基礎學Python的話,建議參加培訓班,入門快、效率高、周期短、實戰項目豐富,還可以提升就業競爭力。
以下是老男孩教育Python全棧課程內容:階段一:Python開發基礎
Python開發基礎課程內容包括:計算機硬體、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程式控制制、字元編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標准庫學習,b加密\re正則\logging日誌模塊等,軟體開發規范學習,計算器程序、ATM程序開發等。
階段二:Python高級級編編程&資料庫開發
Python高級級編編程&資料庫開發課程內容包括:面向對象介紹、特性、成員變數、方法、封裝、繼承、多態、類的生成原理、MetaClass、__new__的作用、抽象類、靜態方法、類方法、屬性方法、如何在程序中使用面向對象思想寫程序、選課程序開發、TCP/IP協議介紹、Socket網路套接字模塊學習、簡單遠程命令執行客戶端開發、C\S架構FTP伺服器開發、線程、進程、隊列、IO多路模型、資料庫類型、特性介紹,表欄位類型、表結構構建語句、常用增刪改查語句、索引、存儲過程、視圖、觸發器、事務、分組、聚合、分頁、連接池、基於資料庫的學員管理系統開發等。
階段三:前端開發
前端開發課程內容包括:HTML\CSS\JS學習、DOM操作、JSONP、原生Ajax非同步載入、購物商城開發、Jquery、動畫效果、事件、定時期、輪播圖、跑馬燈、HTML5\CSS3語法學習、bootstrap、抽屜新熱榜開發、流行前端框架介紹、Vue架構剖析、mvvm開發思想、Vue數據綁定與計算屬性、條件渲染類與樣式綁定、表單控制項綁定、事件綁定webpack使用、vue-router使用、vuex單向數據流與應用結構、vuex actions與mutations熱重載、vue單頁面項目實戰開發等。
階段四:WEB框架開發
WEB框架開發課程內容包括:Web框架原理剖析、Web請求生命周期、自行開發簡單的Web框架、MTV\MVC框架介紹、Django框架使用、路由系統、模板引擎、FBV\CBV視圖、Models ORM、FORM、表單驗證、Django session & cookie、CSRF驗證、XSS、中間件、分頁、自定義tags、Django Admin、cache系統、信號、message、自定義用戶認證、Memcached、redis緩存學習、RabbitMQ隊列學習、Celery分布式任務隊列學習、Flask框架、Tornado框架、Restful API、BBS+Blog實戰項目開發等。
階段五:爬蟲開發
爬蟲開發課程內容包括:Requests模塊、BeautifulSoup,Selenium模塊、PhantomJS模塊學習、基於requests實現登陸:抽屜、github、知乎、博客園、爬取拉鉤職位信息、開發Web版微信、高性能IO性能相關模塊:asyncio、aiohttp、grequests、Twisted、自定義開發一個非同步非阻塞模塊、驗證碼圖像識別、Scrapy框架以及源碼剖析、框架組件介紹(engine、spider、downloader、scheler、pipeline)、分布式爬蟲實戰等。
階段六:全棧項目實戰
全棧項目實戰課程內容包括:互聯網企業專業開發流程講解、git、github協作開發工具講解、任務管理系統講解、介面單元測試、敏捷開發與持續集成介紹、django + uwsgi + nginx生產環境部署學習、介面文檔編寫示例、互聯網企業大型項目架構圖深度講解、CRM客戶關系管理系統開發等。
階段七:數據分析
數據分析課程內容包括:金融、股票知識入門股票基本概念、常見投資工具介紹、市基本交易規則、A股構成等,K線、平均線、KDJ、MACD等各項技術指標分析,股市操作模擬盤演示量化策略的開發流程,金融量化與Python,numpy、pandas、matplotlib模塊常用功能學習在線量化投資平台:優礦、聚寬、米筐等介紹和使用、常見量化策略學習,如雙均線策略、因子選股策略、因子選股策略、小市值策略、海龜交易法則、均值回歸、策略、動量策略、反轉策略、羊駝交易法則、PEG策略等、開發一個簡單的量化策略平台,實現選股、擇時、倉位管理、止盈止損、回測結果展示等功能。
階段八:人工智慧
人工智慧課程內容包括:機器學習要素、常見流派、自然語言識別、分析原理詞向量模型word2vec、剖析分類、聚類、決策樹、隨機森林、回歸以及神經網路、測試集以及評價標准Python機器學習常用庫scikit-learn、數據預處理、Tensorflow學習、基於Tensorflow的CNN與RNN模型、Caffe兩種常用數據源製作、OpenCV庫詳解、人臉識別技術、車牌自動提取和遮蔽、無人機開發、Keras深度學習、貝葉斯模型、無人駕駛模擬器使用和開發、特斯拉遠程式控制制API和自動化駕駛開發等。
階段九:自動化運維&開發
自動化運維&開發課程內容包括:設計符合企業實際需求的CMDB資產管理系統,如安全API介面開發與使用,開發支持windows和linux平台的客戶端,對其它系統開放靈活的api設計與開發IT資產的上線、下線、變更流程等業務流程。IT審計+主機管理系統開發,真實企業系統的用戶行為、管理許可權、批量文件操作、用戶登錄報表等。分布式主機監控系統開發,監控多個服務,多種設備,報警機制,基於http+restful架構開發,實現水平擴展,可輕松實現分布式監控等功能。
階段十:高並發語言GO開發高並發語言GO開發課程內容包括:Golang的發展介紹、開發環境搭建、golang和其他語言對比、字元串詳解、條件判斷、循環、使用數組和map數據類型、go程序編譯和Makefile、gofmt工具、godoc文檔生成工具詳解、斐波那契數列、數據和切片、make&new、字元串、go程序調試、slice&map、map排序、常用標准庫使用、文件增刪改查操作、函數和面向對象詳解、並發、並行與goroute、channel詳解goroute同步、channel、超時與定時器reover捕獲異常、Go高並發模型、Lazy生成器、並發數控制、高並發web伺服器的開發等。

㈣ 基於社區發現演算法和圖分析Neo4j解讀《權力的游戲》下篇

其中的分析和可視化是用Gephi做的,Gephi是非常流行的圖分析工具。但作者覺得使用Neo4j來實現更有趣。

節點中心度
節點中心度給出網路中節點的重要性的相對度量。有許多不同的方式來度量中心度,每種方式都代表不同類型的「重要性」。

度中心性(Degree Centrality)
度中心性是最簡單度量,即為某個節點在網路中的聯結數。在《權力的游戲》的圖中,某個角色的度中心性是指該角色接觸的其他角色數。作者使用Cypher計算度中心性:
MATCH (c:Character)-[:INTERACTS]- RETURN c.name AS character, count(*) AS degree ORDER BY degree DESC

character
degree

Tyrion
36

Jon
26

Sansa
26

Robb
25

Jaime
24

Tywin
22

Cersei
20

Arya
19

Joffrey
18

Robert
18

從上面可以發現,在《權力的游戲》網路中提利昂·蘭尼斯特(Tyrion)和最多的角色有接觸。鑒於他的心計,我們覺得這是有道理的。

加權度中心性(Weighted Degree Centrality)
作者存儲一對角色接觸的次數作為 INTERACTS 關系的 weight 屬性。對該角色的 INTERACTS 關系的所有 weight 相加得到加權度中心性。作者使用Cypher計算所有角色的這個度量:
MATCH (c:Character)-[r:INTERACTS]- RETURN c.name AS character, sum(r.weight) AS weightedDegree ORDER BY weightedDegree DESC

character
weightedDegree

Tyrion
551

Jon
442

Sansa
383

Jaime
372

Bran
344

Robb
342

Samwell
282

Arya
269

Joffrey
255

Daenerys
232

介數中心性(Betweenness Centrality)
介數中心性:在網路中,一個節點的介數中心性是指其它兩個節點的所有最短路徑都經過這個節點,則這些所有最短路徑數即為此節點的介數中心性。介數中心性是一種重要的度量,因為它可以鑒別出網路中的「信息中間人」或者網路聚類後的聯結點。

圖6中紅色節點是具有高的介數中心性,網路聚類的聯結點。
為了計算介數中心性,作者使用Neo4j 3.x或者apoc庫。安裝apoc後能用Cypher調用其170+的程序:
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.betweenness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreSET node.betweenness = scoreRETURN node.name AS name, score ORDER BY score DESC

name
score

Jon
1279.7533534055322

Robert
1165.6025171231624

Tyrion
1101.3849724234349

Daenerys
874.8372110508583

Robb
706.5572832464792

Sansa
705.1985623519137

Stannis
571.5247305125714

Jaime
556.1852522889822

Arya
443.01358430043337

Tywin
364.7212195528086

緊度中心性(Closeness centrality)
緊度中心性是指到網路中所有其他角色的平均距離的倒數。在圖中,具有高緊度中心性的節點在聚類社區之間被高度聯結,但在社區之外不一定是高度聯結的。

圖7 :網路中具有高緊度中心性的節點被其它節點高度聯結
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.closeness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreRETURN node.name AS name, score ORDER BY score DESC

name
score

Tyrion
0.004830917874396135

Sansa
0.004807692307692308

Robert
0.0047169811320754715

Robb
0.004608294930875576

Arya
0.0045871559633027525

Jaime
0.004524886877828055

Stannis
0.004524886877828055

Jon
0.004524886877828055

Tywin
0.004424778761061947

Eddard
0.004347826086956522

使用python-igraph
Neo4j與其它工具(比如,R和Python數據科學工具)完美結合。我們繼續使用apoc運行 PageRank和社區發現(community detection)演算法。這里接著使用python-igraph計算分析。Python-igraph移植自R的igraph圖形分析庫。 使用 pip install python-igraph 安裝它。

從Neo4j構建一個igraph實例
為了在《權力的游戲》的數據的圖分析中使用igraph,首先需要從Neo4j拉取數據,用Python建立igraph實例。作者使用 Neo4j 的Python驅動庫py2neo。我們能直接傳入Py2neo查詢結果對象到igraph的 TupleList 構造器,創建igraph實例:
from py2neo import Graphfrom igraph import Graph as IGraph graph = Graph query = ''' MATCH (c1:Character)-[r:INTERACTS]->(c2:Character) RETURN c1.name, c2.name, r.weight AS weight '''ig = IGraph.TupleList(graph.run(query), weights=True)

現在有了igraph對象,可以運行igraph實現的各種圖演算法來。

PageRank
作者使用igraph運行的第一個演算法是PageRank。PageRank演算法源自Google的網頁排名。它是一種特徵向量中心性(eigenvector centrality)演算法。
在igraph實例中運行PageRank演算法,然後把結果寫回Neo4j,在角色節點創建一個pagerank屬性存儲igraph計算的值:
pg = ig.pagerank pgvs = for p in zip(ig.vs, pg): print(p) pgvs.append({"name": p[0]["name"], "pg": p[1]}) pgvs write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.pagerank = n.pg '''graph.run(write_clusters_query, nodes=pgvs)

現在可以在Neo4j的圖中查詢最高PageRank值的節點:
MATCH (n:Character) RETURN n.name AS name, n.pagerank AS pagerank ORDER BY pagerank DESC LIMIT 10

name
pagerank

Tyrion
0.042884981999963316

Jon
0.03582869669163558

Robb
0.03017114665594764

Sansa
0.030009716660108578

Daenerys
0.02881425425830273

Jaime
0.028727587587471206

Tywin
0.02570016262642541

Robert
0.022292016521362864

Cersei
0.022287327589773507

Arya
0.022050209663844467

社區發現(Community detection)

圖8
社區發現演算法用來找出圖中的社區聚類。作者使用igraph實現的隨機遊走演算法( walktrap)來找到在社區中頻繁有接觸的角色社區,在社區之外角色不怎麼接觸。
在igraph中運行隨機遊走的社區發現演算法,然後把社區發現的結果導入Neo4j,其中每個角色所屬的社區用一個整數來表示:
clusters = IGraph.community_walktrap(ig, weights="weight").as_clustering nodes = [{"name": node["name"]} for node in ig.vs]for node in nodes: idx = ig.vs.find(name=node["name"]).index node["community"] = clusters.membership[idx] write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.community = toInt(n.community) '''graph.run(write_clusters_query, nodes=nodes)

我們能在Neo4j中查詢有多少個社區以及每個社區的成員數:
MATCH (c:Character) WITH c.community AS cluster, collect(c.name) AS members RETURN cluster, members ORDER BY cluster ASC

cluster
members

0
[Aemon, Alliser, Craster, Eddison, Gilly, Janos, Jon, Mance, Rattleshirt, Samwell, Val, Ygritte, Grenn, Karl, Bowen, Dalla, Orell, Qhorin, Styr]

1
[Aerys, Amory, Balon, Brienne, Bronn, Cersei, Gregor, Jaime, Joffrey, Jon Arryn, Kevan, Loras, Lysa, Meryn, Myrcella, Oberyn, Podrick, Renly, Robert, Robert Arryn, Sansa, Shae, Tommen, Tyrion, Tywin, Varys, Walton, Petyr, Elia, Ilyn, Pycelle, Qyburn, Margaery, Olenna, Marillion, Ellaria, Mace, Chataya, Doran]

2
[Arya, Beric, Eddard, Gendry, Sandor, Anguy, Thoros]

3
[Brynden, Catelyn, Edmure, Hoster, Lothar, Rickard, Robb, Roose, Walder, Jeyne, Roslin, Ramsay]

4
[Bran, Hodor, Jojen, Luwin, Meera, Rickon, Nan, Theon]

5
[Belwas, Daario, Daenerys, Irri, Jorah, Missandei, Rhaegar, Viserys, Barristan, Illyrio, Drogo, Aegon, Kraznys, Rakharo, Worm]

6
[Davos, Melisandre, Shireen, Stannis, Cressen, Salladhor]

7
[Lancel]

角色「大合影」
《權力的游戲》的權力圖。節點的大小正比於介數中心性,顏色表示社區(由隨機遊走演算法獲得),邊的厚度正比於兩節點接觸的次數。現在已經計算好這些圖的分析數據,讓我們對其進行可視化,讓數據看起來更有意義。
Neo4j自帶瀏覽器可以對Cypher查詢的結果進行很好的可視化,但如果我們想把可視化好的圖嵌入到其它應用中,可以使用Javascript可視化庫Vis.js。從Neo4j拉取數據,用Vis.js的neovis.js構建可視化圖。Neovis.js提供簡單的API配置,例如:
var config = { container_id: "viz", server_url: "localhost", labels: { "Character": "name" }, label_size: { "Character": "betweenness" }, relationships: { "INTERACTS": }, relationship_thickness: { "INTERACTS": "weight" }, cluster_labels: { "Character": "community" } }; var viz = new NeoVis(config); viz.render;

其中:
節點帶有標簽Character,屬性name;

節點的大小正比於betweenness屬性;

可視化中包括INTERACTS關系;

關系的厚度正比於weight屬性;

節點的顏色是根據網路中社區community屬性決定;

從本地伺服器localhost拉取Neo4j的數據;

在一個id為viz的DOM元素中展示可視化。

熱點內容
如何登錄男朋友的微信密碼 發布:2025-01-16 07:41:14 瀏覽:194
寶駿解壓流程 發布:2025-01-16 07:35:35 瀏覽:2
兩匹壓縮機多少錢 發布:2025-01-16 07:29:19 瀏覽:635
個人pc搭建游戲伺服器 發布:2025-01-16 07:27:09 瀏覽:970
存儲剩餘照片 發布:2025-01-16 07:25:01 瀏覽:50
ftp解除限制上傳文件個數 發布:2025-01-16 07:16:26 瀏覽:348
梯度下降法python 發布:2025-01-16 07:10:43 瀏覽:520
載入並編譯著色器apex 發布:2025-01-16 07:00:08 瀏覽:59
方舟出售腳本 發布:2025-01-16 06:57:55 瀏覽:955
釘釘代理伺服器Ip地址和瑞口 發布:2025-01-16 06:57:05 瀏覽:699