當前位置:首頁 » 編程語言 » java歸並排序

java歸並排序

發布時間: 2024-06-04 14:08:27

1. java 褰掑苟鎺掑簭

浠涔堟槸褰掑苟鎺掑簭錛

2. Java的排序演算法有哪些

java的排序大的分類可以分為兩種:內排序和外排序。在排序過程中,全部記錄存放在內存,則稱為內排序,如果排序過程中需要使用外存,則稱為外排序。下面講的排序都是屬於內排序。
1.插入排序:直接插入排序、二分法插入排序、希爾排序。
2.選擇排序:簡單選擇排序、堆排序。
3.交換排序:冒泡排序、快速排序。
4.歸並排序
5.基數排序

3. java里,幾種排序方法各有什麼優缺點

一、冒泡排序

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先比較 a[1]與a[2]的值,若a[1]大於a[2]則交換兩者的值,否則不變。再比較a[2]與a[3]的值,若a[2]大於a[3]則交換兩者的值,否則不變。再比較a[3]與a[4],以此類推,最後比較a[n-1]與a[n]的值。這樣處理一輪後,a[n]的值一定是這組數據中最大的。再對 a[1]~a[n-1]以相同方法處理一輪,則a[n-1]的值一定是a[1]~a[n-1]中最大的。再對a[1]~a[n-2]以相同方法處理一輪,以此類推。共處理n-1輪後a[1]、a[2]、……a[n]就以升序排列了。

優點:穩定;

缺點:慢,每次只能移動相鄰兩個數據。

二、選擇排序

冒泡排序的改進版。

每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數據元素排完。

選擇排序是不穩定的排序方法。

n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果:

①初始狀態:無序區為R[1..n],有序區為空。

②第1趟排序

在無序區R[1..n]中選出關鍵字最小的記錄R[k],將它與無序區的第1個記錄R[1]交換,使R[1..1]和R[2..n]分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。

……

③第i趟排序

第i趟排序開始時,當前有序區和無序區分別為R[1..i-1]和R(1≤i≤n- 1)。該趟排序從當前無序區中選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1..i]和R分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。

這樣,n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。

優點:移動數據的次數已知(n-1次);

缺點:比較次數多。

三、插入排序

已知一組升序排列數據a[1]、a[2]、……a[n],一組無序數據b[1]、 b[2]、……b[m],需將二者合並成一個升序數列。首先比較b[1]與a[1]的值,若b[1]大於a[1],則跳過,比較b[1]與a[2]的值,若b[1]仍然大於a[2],則繼續跳過,直到b[1]小於a數組中某一數據a[x],則將a[x]~a[n]分別向後移動一位,將b[1]插入到原來 a[x]的位置這就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若無數組a,可將b[1]當作n=1的數組a)

優點:穩定,快;

缺點:比較次數不一定,比較次數越少,插入點後的數據移動越多,特別是當數據總量龐大的時候,但用鏈表可以解決這個問題。

三、縮小增量排序

由希爾在1959年提出,又稱希爾排序(shell排序)。

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。發現當n不大時,插入排序的效果很好。首先取一增量d(d<n),將a[1]、a[1+d]、a[1+2d]……列為第一組,a[2]、a[2+d]、 a[2+2d]……列為第二組……,a[d]、a[2d]、a[3d]……列為最後一組以次類推,在各組內用插入排序,然後取d'<d,重復上述操作,直到d=1。

優點:快,數據移動少;

缺點:不穩定,d的取值是多少,應取多少個不同的值,都無法確切知道,只能憑經驗來取。

四、快速排序

快速排序是目前已知的最快的排序方法。

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先任取數據 a[x]作為基準。比較a[x]與其它數據並排序,使a[x]排在數據的第k位,並且使a[1]~a[k-1]中的每一個數據<a[x],a[k+1]~a[n]中的每一個數據>a[x],然後採用分治的策略分別對a[1]~a[k-1]和a[k+1]~a[n] 兩組數據進行快速排序。

優點:極快,數據移動少;

缺點:不穩定。

五、箱排序

已知一組無序正整數數據a[1]、a[2]、……a[n],需將其按升序排列。首先定義一個數組x[m],且m>=a[1]、a[2]、……a[n],接著循環n次,每次x[a]++.

優點:快,效率達到O(1)

缺點:數據范圍必須為正整數並且比較小

六、歸並排序

歸並排序是多次將兩個或兩個以上的有序表合並成一個新的有序表。最簡單的歸並是直接將兩個有序的子表合並成一個有序的表。

歸並排序是穩定的排序.即相等的元素的順序不會改變.如輸入記錄 1(1) 3(2) 2(3) 2(4) 5(5) (括弧中是記錄的關鍵字)時輸出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按輸入的順序.這對要排序數據包含多個信息而要按其中的某一個信息排序,要求其它信息盡量按輸入的順序排列時很重要.這也是它比快速排序優勢的地方.

4. 數據結構 java開發中常用的排序演算法有哪些

排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。

主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序

一、冒泡(Bubble)排序

----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。

二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。

三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。

四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。

五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。

七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------

堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。

堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。

堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。

八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。

5. 常見查找和排序演算法

查找成功最多要n 次,平均(n+1)/2次, 時間復雜度為O(n)
優點:既適用順序表也適用單鏈表,同時對表中元素順序無要求,給插入帶來方便,只需插入表尾即可。
缺點:速度較慢。

改進:在表尾設置一個崗哨,這樣不用去循環判斷數組下標是否越界,因為最後必然成立。

適用條件:

二分查找的判定樹不僅是二叉排序樹,而且是一棵理想平衡樹。 時間復雜度為O(lbn)

循環實現

遞歸實現

待排序的元素需要實現 Java 的 Comparable 介面,該介面有 compareTo() 方法,可以用它來判斷兩個元素的大小關系。

從數組中選擇最小元素,將它與數組的第一個元素交換位置。再從數組剩下的元素中選擇出最小的元素,將它與數組的第二個元素交換位置。不斷進行這樣的操作,直到將整個數組排序。

選擇排序需要 ~N2/2 次比較和 ~N 次交換,==它的運行時間與輸入無關==,這個特點使得它對一個已經排序的數組也需要這么多的比較和交換操作。

從左到右不斷 交換相鄰逆序的元素 ,在一輪的循環之後,可以讓未排序的最大元素上浮到右側。

在一輪循環中,如果沒有發生交換,那麼說明數組已經是有序的,此時可以直接退出。

每次都 將當前元素插入到左側已經排序的數組中 ,使得插入之後左側數組依然有序。

對於數組 {3, 5, 2, 4, 1},它具有以下逆序:(3, 2), (3, 1), (5, 2), (5, 4), (5, 1), (2, 1), (4, 1),插入排序每次只能交換相鄰元素,令逆序數量減少 1,因此插入排序需要交換的次數為逆序數量。

==插入排序的時間復雜度取決於數組的初始順序,如果數組已經部分有序了,那麼逆序較少,需要的交換次數也就較少,時間復雜度較低==。

對於大規模的數組,插入排序很慢,因為它只能交換相鄰的元素,每次只能將逆序數量減少 1。希爾排序的出現就是為了解決插入排序的這種局限性,它通過交換不相鄰的元素,每次可以將逆序數量減少大於 1。

希爾排序使用插入排序對間隔 h 的序列進行排序。通過不斷減小 h,最後令 h=1,就可以使得整個數組是有序的。

希爾排序的運行時間達不到平方級別,使用遞增序列 1, 4, 13, 40, ... 的希爾排序所需要的比較次數不會超過 N 的若干倍乘於遞增序列的長度。後面介紹的高級排序演算法只會比希爾排序快兩倍左右。

歸並排序的思想是將數組分成兩部分,分別進行排序,然後歸並起來。

歸並方法將數組中兩個已經排序的部分歸並成一個。

將一個大數組分成兩個小數組去求解。

因為每次都將問題對半分成兩個子問題,這種對半分的演算法復雜度一般為 O(NlogN)。

先歸並那些微型數組,然後成對歸並得到的微型數組。

取 a[l] 作為切分元素,然後從數組的左端向右掃描直到找到第一個大於等於它的元素,再從數組的右端向左掃描找到第一個小於它的元素,交換這兩個元素。不斷進行這個過程,就可以保證左指針 i 的左側元素都不大於切分元素,右指針 j 的右側元素都不小於切分元素。當兩個指針相遇時,將切分元素 a[l] 和 a[j] 交換位置。

快速排序是原地排序,不需要輔助數組,但是遞歸調用需要輔助棧。

快速排序最好的情況下是每次都正好將數組對半分,這樣遞歸調用次數才是最少的。這種情況下比較次數為 CN=2CN/2+N,復雜度為 O(NlogN)。

最壞的情況下,第一次從最小的元素切分,第二次從第二小的元素切分,如此這般。因此最壞的情況下需要比較 N2/2。為了防止數組最開始就是有序的,在進行快速排序時需要隨機打亂數組。

因為快速排序在小數組中也會遞歸調用自己,對於小數組,插入排序比快速排序的性能更好,因此在小數組中可以切換到插入排序。

最好的情況下是每次都能取數組的中位數作為切分元素,但是計算中位數的代價很高。一種折中方法是取 3 個元素,並將大小居中的元素作為切分元素。

對於有大量重復元素的數組,可以將數組切分為三部分,分別對應小於、等於和大於切分元素。

三向切分快速排序對於有大量重復元素的隨機數組可以在線性時間內完成排序。

快速排序的 partition() 方法,會返回一個整數 j 使得 a[l..j-1] 小於等於 a[j],且 a[j+1..h] 大於等於 a[j],此時 a[j] 就是數組的第 j 大元素。

可以利用這個特性找出數組的第 k 大的元素。

該演算法是線性級別的,假設每次能將數組二分,那麼比較的總次數為 (N+N/2+N/4+..),直到找到第 k 個元素,這個和顯然小於 2N。

堆中某個節點的值總是大於等於其子節點的值,並且堆是一顆完全二叉樹。

堆可以用數組來表示,這是因為堆是完全二叉樹,而完全二叉樹很容易就存儲在數組中。位置 k 的節點的父節點位置為 k/2,而它的兩個子節點的位置分別為 2k 和 2k+1。這里不使用數組索引為 0 的位置,是為了更清晰地描述節點的位置關系。

在堆中,當一個節點比父節點大,那麼需要交換這個兩個節點。交換後還可能比它新的父節點大,因此需要不斷地進行比較和交換操作,把這種操作稱為上浮。

類似地,當一個節點比子節點來得小,也需要不斷地向下進行比較和交換操作,把這種操作稱為下沉。一個節點如果有兩個子節點,應當與兩個子節點中最大那個節點進行交換。

將新元素放到數組末尾,然後上浮到合適的位置。

從數組頂端刪除最大的元素,並將數組的最後一個元素放到頂端,並讓這個元素下沉到合適的位置。

把最大元素和當前堆中數組的最後一個元素交換位置,並且不刪除它,那麼就可以得到一個從尾到頭的遞減序列,從正向來看就是一個遞增序列,這就是堆排序。

一個堆的高度為logN,因此在堆中插入元素和刪除最大元素的復雜度都為 logN。

對於堆排序,由於要對 N 個節點進行下沉操作,因此復雜度為 NlogN。

堆排序是一種原地排序,沒有利用額外的空間。

現代操作系統很少使用堆排序,因為它無法利用局部性原理進行緩存,也就是數組元素很少和相鄰的元素進行比較和交換。

計數排序的核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,==計數排序要求輸入的數據必須是有確定范圍的整數==。

當輸入的元素是 n 個 0 到 k 之間的整數時,它的==運行時間是 O(n + k)==。計數排序不是比較排序,排序的速度快於任何比較排序演算法。由於用來計數的數組C的長度取決於待排序數組中數據的范圍(等於待排序數組的最大值與最小值的差加上1),這使得計數排序對於數據范圍很大的數組,需要大量時間和內存。比較適合用來排序==小范圍非負整數數組的數組==。

桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在於這個映射函數的確定。為了使桶排序更加高效,我們需要做到這兩點:

同時,對於桶中元素的排序,選擇何種比較排序演算法對於性能的影響至關重要。

當輸入數據均勻分配到每一個桶時最快,當都分配到同一個桶時最慢。

實間復雜度N*K

快速排序是最快的通用排序演算法,它的內循環的指令很少,而且它還能利用緩存,因為它總是順序地訪問數據。它的運行時間近似為 ~cNlogN,這里的 c 比其它線性對數級別的排序演算法都要小。

使用三向切分快速排序,實際應用中可能出現的某些分布的輸入能夠達到線性級別,而其它排序演算法仍然需要線性對數時間。

6. java十大演算法

演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法步驟:

1 從數列中挑出一個元素,稱為 "基準"(pivot),

2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。

3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。

演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。

堆排序的平均時間復雜度為Ο(nlogn) 。

演算法步驟:

創建一個堆H[0..n-1]

把堆首(最大值)和堆尾互換

3. 把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置

4. 重復步驟2,直到堆的尺寸為1

演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

演算法步驟:

1. 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列

2. 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置

3. 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置

4. 重復步驟3直到某一指針達到序列尾

5. 將另一序列剩下的所有元素

7. java怎麼實現排序

Java實現幾種常見排序方法

日常操作中常見的排序方法有:冒泡排序、快速排序、選擇排序、插入排序、希爾排序,甚至還有基數排序、雞尾酒排序、桶排序、鴿巢排序、歸並排序等。
以下常見演算法的定義
1. 插入排序:插入排序基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。插入排序的基本思想是:每步將一個待排序的紀錄,按其關鍵碼值的大小插入前面已經排序的文件中適當位置上,直到全部插入完為止。
2. 選擇排序:選擇排序(Selection sort)是一種簡單直觀的排序演算法。它的工作原理是每一次從待排序的數據元素中選出最小(或最大)的一個元素,存放在序列的起始位置,直到全部待排序的數據元素排完。 選擇排序是不穩定的排序方法。
3. 冒泡排序:冒泡排序(Bubble Sort),是一種計算機科學領域的較簡單的排序演算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越大的元素會經由交換慢慢「浮」到數列的頂端。
4. 快速排序:快速排序(Quicksort)是對冒泡排序的一種改進。它的基本思想是:通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
5. 歸並排序:歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
6. 希爾排序:希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法便終止。
https://www.cnblogs.com/wangmingshun/p/5635292.html

8. java實現歸並排序問題

public void mySort(int low,int high){
int lo=low;
int hi=high;
if (lo>=hi) {
return;
}else{
boolean flag=false;
while (lo<hi) {
if (arrs[lo]>arrs[hi]) {
int temp=arrs[lo];
arrs[lo]=arrs[hi];
arrs[hi]=temp;
flag=!flag;
}else{
if (flag) {
lo++;
}else{
hi--;
}
}

}
lo--;
hi++;
mySort(low,lo);
mySort(hi,high);

}
}
這里是遞歸加二分法(排序的方法) 希望能幫到你!!望~~點贊

熱點內容
開通了免密為什麼還要密碼 發布:2024-11-27 04:17:42 瀏覽:14
excel導入資料庫java 發布:2024-11-27 04:16:21 瀏覽:623
ps不能存儲bpm 發布:2024-11-27 04:04:12 瀏覽:612
jquery代碼加密 發布:2024-11-27 03:54:51 瀏覽:593
數字密碼人格是什麼原理 發布:2024-11-27 03:46:34 瀏覽:426
華為怎麼看手機的配置 發布:2024-11-27 03:27:42 瀏覽:381
php函數作用域 發布:2024-11-27 03:26:11 瀏覽:176
pythonasteval 發布:2024-11-27 03:21:14 瀏覽:563
電腦伺服器機什麼意思 發布:2024-11-27 03:18:59 瀏覽:837
本地存儲是否允許 發布:2024-11-27 03:08:02 瀏覽:411