當前位置:首頁 » 編程語言 » java實現的加密演算法

java實現的加密演算法

發布時間: 2024-05-05 14:20:33

java編程如何給數字加密

最簡單的,用異或運算。
你也可以自己寫個加密方法啊。
比如說:利用unicode字元加密啊。假設一個數字a它的unicode值是1234,你自己設計個函數,比如說y=2x^3+3,得到一個新的unicode字元,然後把這個unicode字元轉換為字母,這個字母可能是漢字,但更可能是外國符文,反正一般人不會認出來的。你解密的時候,倒推一下就行了。

② java項目如何加密

Java基本的單向加密演算法

1.BASE64 嚴格地說,屬於編碼格式,而非加密演算法
2.MD5(Message Digest algorithm 5,信息摘要演算法)
3.SHA(Secure Hash Algorithm,安全散列演算法)
4.HMAC(Hash Message Authentication Code,散列消息鑒別碼)
按 照RFC2045的定義,Base64被定義為:Base64內容傳送編碼被設計用來把任意序列的8位位元組描述為一種不易被人直接識別的形式。(The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable.)
常見於郵件、http加密,截取http信息,你就會發現登錄操作的用戶名、密碼欄位通過BASE64加密的。
主要就是BASE64Encoder、BASE64Decoder兩個類,我們只需要知道使用對應的方法即可。另,BASE加密後產生的位元組位數是8的倍數,如果不夠位數以=符號填充。
MD5
MD5 -- message-digest algorithm 5 (信息-摘要演算法)縮寫,廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD5後都能生成唯一的MD5值。好比現在的ISO校驗,都 是MD5校驗。怎麼用?當然是把ISO經過MD5後產生MD5的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD5的串。就是用來驗證文 件是否一致的。

HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個 標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證 等。

③ 如何用java語言對即時通訊軟體進行加密

一、Java軟體加密基本思路
對於應用軟體的保護筆者從兩個方面進行考慮,第一是阻止盜版使用軟體,第二是阻止競爭對手對軟體反編譯,即阻止對軟體的逆向工程。
1、阻止盜版
在軟體運行時對自身存在的合法性進行判斷,如果認為自身的存在和運行是被授權的、合法的,就運行;否則終止運行。這樣即使軟體可以被隨意復制,只要盜版用戶沒有相應的授權信息就無法使用軟體。
2、阻止反編譯
對編譯產生的Class文件加密處理,並在運行時進行解密,解密者無法對軟體進行反編譯。
二、Java軟體加密的總體流程
為了保護用Java語言開發的軟體,我們設計並實現了一個實用、高強度的加密演算法。以下稱需要保護的Java軟體為「受保護程序」,稱對「受保護程序」進行加密保護的軟體為「加密程序」。對軟體加密保護的流程如圖1所示。

三、加密演算法分析設計
1、用戶信息提取器設計
為了防止用戶發布序列號而導致「一次發行,到處都是」的盜版問題,提取用戶機器中硬體相關的、具有唯一性的信息——用戶計算機的硬碟分區C的序列號,並要求用戶將此信息與用戶名一起返回,之後用「序列號生成器」根據用戶返回信息生成一個唯一合法的軟體注冊序列號發回用戶,用戶即可使用此號碼注冊使用軟體。
這個信息提取器使用Winclows 32匯編以一個獨立的小程序方式實現,程序代碼如圖2所示。

2、序列號生成器與序列號合法性判斷函數的設計
序列號生成器與序列號合法性判斷函數中運用RSA加密演算法。在序列號生成器中是使用私鑰將用戶返回的信息(硬碟序列號,用戶名)進行加密得到相應的注冊序列號;在序列號合法性判斷函數中使用私鑰將用戶輸入的注冊序列號解密,再與(硬碟序列號,用戶名)進行比較,一致則調用程序裝載器將程序其他部分解密裝入內存,初始化刪環境並運行程序主體;否則退出。
RSA加密演算法的實現需要使用大數運算庫,我們使用MIRACL大數庫來實現RSA計算,序列號生成器的主要代碼如下:
char szlnputString[]=」機器碼和用戶名組成的字元串」;
char szSerial[256]=[0];//用於存放生成的注冊碼
bign,d,c,m; //MIRACL中的大數類型
mip→IBASE=16; //以16進制模式
n= mlrvar(0); //初始化大數
d= mirvar(0);
c= mirvar(0); //C存放輸入的字元串大數
m= mlrva(o);
bytes to big( len, szlnputString,c);
//將輸入字元串轉換成大數形式並存入變數c中
cinstr(n,」以字元串形成表示的模數」);//初始化模數
cinstr(d,」以字元串形成表示的公鑰」)://初始化公鑰
powmod(c,d,n,m); //計算m=cdmod n
cotstr(m,szSerial);//m的16進制字元串即為注冊碼
序列號合法性檢測函數的主要代碼如下:
char szlnputStringL]=」機器碼和用戶名組成的字元串」;
char szSerial[ 256]=」用戶輸入的序列號」
bign,e,c,m; //MIRACL中的大數類型
mip→IBASE=16; //以16進制模式
cinstr(m,szSerial); //將序列號的16進制轉成大數形式
cinstr(n,」模數n的字元串形式」);//初始化模數n
cinstr(e,」字元串形式的公鑰」);//初始化公鑰
if compare(m,n)==-1) //m<n時才進行解密
{
powmod(m,e,n,c);//計算m=me mod n
big_to _bytes(0,c,szSerial,0); //轉為字元串
return lstrcmp( szlnputString,szSerial);
}
3、強耦合關系的設計
如果在序列號合法性檢測函數中簡單地使用圖3所示流程:

解密者可以使用以下幾種手段進行攻擊:
(1)修改「判斷合法性子函數」的返回指令,讓它永遠返回正確值,這樣可以使用任意的序列號,安裝/使用軟體。
(2)修改判斷後的跳轉指令,使程序永遠跳到正確的分支運行,效果和上一種一樣。
(3)在「判斷合法性子函數」之前執行一條跳轉指令,繞過判斷,直接跳轉到「正常執行」分支運行,這樣可以不用輸入序列號安裝/使用軟體。
為阻止以上攻擊手段,筆者在程序中增加了「序列號合法性檢測函數」與程序其他部分「強耦合」(即增強其與程序其他部分的關聯度,成為程序整體密不可分的一部分,一旦被修改程序將無法正常工作)的要求(見圖1),並且設置一個「完整性檢測函數」用於判斷相關的代碼是否被修改過。當然,基於同樣的原因,「完整性檢測函數」也必須與程序其他部分存在「強耦合」關系。
強耦合關系通過以下方式建立:
在程序其他部分的函數(例如函數A)中隨機的訪問需要強耦合的「序列號合法性檢測函數」和「完整性檢測函數」,在調用時隨機的選擇使用一個錯誤的序列號或是用戶輸入的序列號,並根據返回結果選擇執行A中正常的功能代碼還是錯誤退出的功能代碼,流程如圖4所示。

經過這種改進,如果破解者通過修改代碼的方式破解將因「完整性檢測」失敗導致程序退出;如果使用SMC等技術繞過「序列號合法性判斷函數」而直接跳至序列號正確時的執行入口,在後續的運行中,將因為隨機的耦合調用失敗導致程序退出。破解者要破解軟體將不得不跟蹤所有進行了耦合調用的函數,這顯然是一個艱巨的任務。
4、完整性檢測函數的設計
我們使用CRC演算法算出需進行完整性檢測的文件的校驗碼,並用RSA加密演算法的公鑰(不同於序列號合法性檢測中的公鑰/私鑰對)將其加密存放在特定的文件中,在檢測時先用CRC演算法重新生成需進行完
整性檢測的文件的校驗碼,並用私鑰將保存的校驗碼解密,兩者相比較,相等則正常運行;否則退出。
5、程序載入器的設計
與編譯成機器碼執行的程序不同,Java程序只能由Java虛擬機解釋執行,因此程序載入器的工作包括:初始化Java虛擬機;在內存中解密當前要運行的class文件;使解密後的c:lass文件在虛擬機中運行,在
需要時解密另一個class文件。圖5是用於初始化JVM的代碼:

以上介紹了我們設計的針對Java軟體的加密保護方法,其中綜合運用了多種加密技術,抗破解強度高;使用純軟體保護技術,成本低。經筆者在Windows系列平台上進行測試,運行穩定,效果良好。
在研宄開發過程中,我們還總結出加密保護軟體的一些經驗:
1、對關鍵代碼和數據要靜態加密,再動態解密執行;要結合具體的工作平台使用反跟蹤/調試技術;
2、要充分利用系統的功能,如在Windows下使用DLL文件或驅動程序形式能得到最大的豐又限,可以充分利用系統具有的各種功能;
3、如果可能應該將關鍵代碼存放在不可禚復制的地方;
4、序列號要與機器碼等用戶信息相關以阻止鹽復布序列號;
5、加密流程的合理性比加密演算法本身的強度更重要。

④ java的MD5withRSA演算法可以看到解密的內容么

您好,
<一>. MD5加密演算法:
? ? ? ?消息摘要演算法第五版(Message Digest Algorithm),是一種單向加密演算法,只能加密、無法解密。然而MD5加密演算法已經被中國山東大學王小雲教授成功破譯,但是在安全性要求不高的場景下,MD5加密演算法仍然具有應用價值。
?1. 創建md5對象:?
<pre name="code" class="java">MessageDigest md5 = MessageDigest.getInstance("md5");
?2. ?進行加密操作:?
byte[] cipherData = md5.digest(plainText.getBytes());

?3. ?將其中的每個位元組轉成十六進制字元串:byte類型的數據最高位是符號位,通過和0xff進行與操作,轉換為int類型的正整數。?
String toHexStr = Integer.toHexString(cipher & 0xff);

?4. 如果該正數小於16(長度為1個字元),前面拼接0佔位:確保最後生成的是32位字元串。?
builder.append(toHexStr.length() == 1 ? "0" + toHexStr : toHexStr);

?5.?加密轉換之後的字元串為:?
?6. 完整的MD5演算法應用如下所示:?
/**
* 功能簡述: 測試MD5單向加密.
* @throws Exception
*/
@Test
public void test01() throws Exception {
String plainText = "Hello , world !";
MessageDigest md5 = MessageDigest.getInstance("md5");
byte[] cipherData = md5.digest(plainText.getBytes());
StringBuilder builder = new StringBuilder();
for(byte cipher : cipherData) {
String toHexStr = Integer.toHexString(cipher & 0xff);
builder.append(toHexStr.length() == 1 ? "0" + toHexStr : toHexStr);
}
System.out.println(builder.toString());
//
}

??
<二>. 使用BASE64進行加密/解密:
? ? ? ? 使用BASE64演算法通常用作對二進制數據進行加密,加密之後的數據不易被肉眼識別。嚴格來說,經過BASE64加密的數據其實沒有安全性可言,因為它的加密解密演算法都是公開的,典型的防菜鳥不防程序猿的呀。?經過標準的BASE64演算法加密後的數據,?通常包含/、+、=等特殊符號,不適合作為url參數傳遞,幸運的是Apache的Commons Codec模塊提供了對BASE64的進一步封裝。? (參見最後一部分的說明)
?1.?使用BASE64加密:?
BASE64Encoder encoder = new BASE64Encoder();
String cipherText = encoder.encode(plainText.getBytes());

? 2.?使用BASE64解密:?
BASE64Decoder decoder = new BASE64Decoder();
plainText = new String(decoder.decodeBuffer(cipherText));

? 3. 完整代碼示例:?
/**
* 功能簡述: 使用BASE64進行雙向加密/解密.
* @throws Exception
*/
@Test
public void test02() throws Exception {
BASE64Encoder encoder = new BASE64Encoder();
BASE64Decoder decoder = new BASE64Decoder();
String plainText = "Hello , world !";
String cipherText = encoder.encode(plainText.getBytes());
System.out.println("cipherText : " + cipherText);
//cipherText : SGVsbG8gLCB3b3JsZCAh
System.out.println("plainText : " +
new String(decoder.decodeBuffer(cipherText)));
//plainText : Hello , world !
}

??
<三>. 使用DES對稱加密/解密:
? ? ? ? ?數據加密標准演算法(Data Encryption Standard),和BASE64最明顯的區別就是有一個工作密鑰,該密鑰既用於加密、也用於解密,並且要求密鑰是一個長度至少大於8位的字元串。使用DES加密、解密的核心是確保工作密鑰的安全性。
?1.?根據key生成密鑰:?
DESKeySpec keySpec = new DESKeySpec(key.getBytes());
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("des");
SecretKey secretKey = keyFactory.generateSecret(keySpec);

? 2.?加密操作:?
Cipher cipher = Cipher.getInstance("des");
cipher.init(Cipher.ENCRYPT_MODE, secretKey, new SecureRandom());
byte[] cipherData = cipher.doFinal(plainText.getBytes());

? 3.?為了便於觀察生成的加密數據,使用BASE64再次加密:?
String cipherText = new BASE64Encoder().encode(cipherData);

? ? ?生成密文如下:PtRYi3sp7TOR69UrKEIicA==?
? 4.?解密操作:?
cipher.init(Cipher.DECRYPT_MODE, secretKey, new SecureRandom());
byte[] plainData = cipher.doFinal(cipherData);
String plainText = new String(plainData);

? 5. 完整的代碼demo:?
/**
* 功能簡述: 使用DES對稱加密/解密.
* @throws Exception
*/
@Test
public void test03() throws Exception {
String plainText = "Hello , world !";
String key = "12345678"; //要求key至少長度為8個字元

SecureRandom random = new SecureRandom();
DESKeySpec keySpec = new DESKeySpec(key.getBytes());
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("des");
SecretKey secretKey = keyFactory.generateSecret(keySpec);

Cipher cipher = Cipher.getInstance("des");
cipher.init(Cipher.ENCRYPT_MODE, secretKey, random);
byte[] cipherData = cipher.doFinal(plainText.getBytes());
System.out.println("cipherText : " + new BASE64Encoder().encode(cipherData));
//PtRYi3sp7TOR69UrKEIicA==

cipher.init(Cipher.DECRYPT_MODE, secretKey, random);
byte[] plainData = cipher.doFinal(cipherData);
System.out.println("plainText : " + new String(plainData));
//Hello , world !
}

??
<四>. 使用RSA非對稱加密/解密:
? ? ? ? RSA演算法是非對稱加密演算法的典型代表,既能加密、又能解密。和對稱加密演算法比如DES的明顯區別在於用於加密、解密的密鑰是不同的。使用RSA演算法,只要密鑰足夠長(一般要求1024bit),加密的信息是不能被破解的。用戶通過https協議訪問伺服器時,就是使用非對稱加密演算法進行數據的加密、解密操作的。
? ? ? ?伺服器發送數據給客戶端時使用私鑰(private key)進行加密,並且使用加密之後的數據和私鑰生成數字簽名(digital signature)並發送給客戶端。客戶端接收到伺服器發送的數據會使用公鑰(public key)對數據來進行解密,並且根據加密數據和公鑰驗證數字簽名的有效性,防止加密數據在傳輸過程中被第三方進行了修改。
? ? ? ?客戶端發送數據給伺服器時使用公鑰進行加密,伺服器接收到加密數據之後使用私鑰進行解密。
?1.?創建密鑰對KeyPair:
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("rsa");
keyPairGenerator.initialize(1024); //密鑰長度推薦為1024位.
KeyPair keyPair = keyPairGenerator.generateKeyPair();

? 2.?獲取公鑰/私鑰:
PublicKey publicKey = keyPair.getPublic();
PrivateKey privateKey = keyPair.getPrivate();

? 3.?伺服器數據使用私鑰加密:
Cipher cipher = Cipher.getInstance("rsa");
cipher.init(Cipher.ENCRYPT_MODE, privateKey, new SecureRandom());
byte[] cipherData = cipher.doFinal(plainText.getBytes());

? 4.?用戶使用公鑰解密:
cipher.init(Cipher.DECRYPT_MODE, publicKey, new SecureRandom());
byte[] plainData = cipher.doFinal(cipherData);

? 5.?伺服器根據私鑰和加密數據生成數字簽名:
Signature signature = Signature.getInstance("MD5withRSA");
signature.initSign(privateKey);
signature.update(cipherData);
byte[] signData = signature.sign();

? 6.?用戶根據公鑰、加密數據驗證數據是否被修改過:
signature.initVerify(publicKey);
signature.update(cipherData);
boolean status = signature.verify(signData);

? 7. RSA演算法代碼demo:<img src="http://www.cxyclub.cn/Upload/Images/2014081321/99A5FC9C0C628374.gif" alt="尷尬" title="尷尬" border="0">
/**
* 功能簡述: 使用RSA非對稱加密/解密.
* @throws Exception
*/
@Test
public void test04() throws Exception {
String plainText = "Hello , world !";

KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("rsa");
keyPairGenerator.initialize(1024);
KeyPair keyPair = keyPairGenerator.generateKeyPair();

PublicKey publicKey = keyPair.getPublic();
PrivateKey privateKey = keyPair.getPrivate();

Cipher cipher = Cipher.getInstance("rsa");
SecureRandom random = new SecureRandom();

cipher.init(Cipher.ENCRYPT_MODE, privateKey, random);
byte[] cipherData = cipher.doFinal(plainText.getBytes());
System.out.println("cipherText : " + new BASE64Encoder().encode(cipherData));
//gDsJxZM98U2GzHUtUTyZ/Ir/
///ONFOD0fnJoGtIk+T/+3yybVL8M+RI+HzbE/jdYa/+
//yQ+vHwHqXhuzZ/N8iNg=

cipher.init(Cipher.DECRYPT_MODE, publicKey, random);
byte[] plainData = cipher.doFinal(cipherData);
System.out.println("plainText : " + new String(plainData));
//Hello , world !

Signature signature = Signature.getInstance("MD5withRSA");
signature.initSign(privateKey);
signature.update(cipherData);
byte[] signData = signature.sign();
System.out.println("signature : " + new BASE64Encoder().encode(signData));
//+
//co64p6Sq3kVt84wnRsQw5mucZnY+/+vKKXZ3pbJMNT/4
///t9ewo+KYCWKOgvu5QQ=

signature.initVerify(publicKey);
signature.update(cipherData);
boolean status = signature.verify(signData);
System.out.println("status : " + status);
//true
}

⑤ 如何用JAVA實現字元串簡單加密解密

java加密字元串可以使用des加密演算法,實例如下:
package test;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.security.*;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
/**
* 加密解密
*
* @author shy.qiu
* @since http://blog.csdn.net/qiushyfm
*/
public class CryptTest {
/**
* 進行MD5加密
*
* @param info
* 要加密的信息
* @return String 加密後的字元串
*/
public String encryptToMD5(String info) {
byte[] digesta = null;
try {
// 得到一個md5的消息摘要
MessageDigest alga = MessageDigest.getInstance("MD5");
// 添加要進行計算摘要的信息
alga.update(info.getBytes());
// 得到該摘要
digesta = alga.digest();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
// 將摘要轉為字元串
String rs = byte2hex(digesta);
return rs;
}
/**
* 進行SHA加密
*
* @param info
* 要加密的信息
* @return String 加密後的字元串
*/
public String encryptToSHA(String info) {
byte[] digesta = null;
try {
// 得到一個SHA-1的消息摘要
MessageDigest alga = MessageDigest.getInstance("SHA-1");
// 添加要進行計算摘要的信息
alga.update(info.getBytes());
// 得到該摘要
digesta = alga.digest();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
// 將摘要轉為字元串
String rs = byte2hex(digesta);
return rs;
}
// //////////////////////////////////////////////////////////////////////////
/**
* 創建密匙
*
* @param algorithm
* 加密演算法,可用 DES,DESede,Blowfish
* @return SecretKey 秘密(對稱)密鑰
*/
public SecretKey createSecretKey(String algorithm) {
// 聲明KeyGenerator對象
KeyGenerator keygen;
// 聲明 密鑰對象
SecretKey deskey = null;
try {
// 返回生成指定演算法的秘密密鑰的 KeyGenerator 對象
keygen = KeyGenerator.getInstance(algorithm);
// 生成一個密鑰
deskey = keygen.generateKey();
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
// 返回密匙
return deskey;
}
/**
* 根據密匙進行DES加密
*
* @param key
* 密匙
* @param info
* 要加密的信息
* @return String 加密後的信息
*/
public String encryptToDES(SecretKey key, String info) {
// 定義 加密演算法,可用 DES,DESede,Blowfish
String Algorithm = "DES";
// 加密隨機數生成器 (RNG),(可以不寫)
SecureRandom sr = new SecureRandom();
// 定義要生成的密文
byte[] cipherByte = null;
try {
// 得到加密/解密器
Cipher c1 = Cipher.getInstance(Algorithm);
// 用指定的密鑰和模式初始化Cipher對象
// 參數:(ENCRYPT_MODE, DECRYPT_MODE, WRAP_MODE,UNWRAP_MODE)
c1.init(Cipher.ENCRYPT_MODE, key, sr);
// 對要加密的內容進行編碼處理,
cipherByte = c1.doFinal(info.getBytes());
} catch (Exception e) {
e.printStackTrace();
}
// 返回密文的十六進制形式
return byte2hex(cipherByte);
}
/**
* 根據密匙進行DES解密
*
* @param key
* 密匙
* @param sInfo
* 要解密的密文
* @return String 返回解密後信息
*/
public String decryptByDES(SecretKey key, String sInfo) {
// 定義 加密演算法,
String Algorithm = "DES";
// 加密隨機數生成器 (RNG)
SecureRandom sr = new SecureRandom();
byte[] cipherByte = null;
try {
// 得到加密/解密器
Cipher c1 = Cipher.getInstance(Algorithm);
// 用指定的密鑰和模式初始化Cipher對象
c1.init(Cipher.DECRYPT_MODE, key, sr);
// 對要解密的內容進行編碼處理
cipherByte = c1.doFinal(hex2byte(sInfo));
} catch (Exception e) {
e.printStackTrace();
}
// return byte2hex(cipherByte);
return new String(cipherByte);
}
// /////////////////////////////////////////////////////////////////////////////
/**
* 創建密匙組,並將公匙,私匙放入到指定文件中
*
* 默認放入mykeys.bat文件中
*/
public void createPairKey() {
try {
// 根據特定的演算法一個密鑰對生成器
KeyPairGenerator keygen = KeyPairGenerator.getInstance("DSA");
// 加密隨機數生成器 (RNG)
SecureRandom random = new SecureRandom();
// 重新設置此隨機對象的種子
random.setSeed(1000);
// 使用給定的隨機源(和默認的參數集合)初始化確定密鑰大小的密鑰對生成器
keygen.initialize(512, random);// keygen.initialize(512);
// 生成密鑰組
KeyPair keys = keygen.generateKeyPair();
// 得到公匙
PublicKey pubkey = keys.getPublic();
// 得到私匙
PrivateKey prikey = keys.getPrivate();
// 將公匙私匙寫入到文件當中
doObjToFile("mykeys.bat", new Object[] { prikey, pubkey });
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
}
/**
* 利用私匙對信息進行簽名 把簽名後的信息放入到指定的文件中
*
* @param info
* 要簽名的信息
* @param signfile
* 存入的文件
*/
public void signToInfo(String info, String signfile) {
// 從文件當中讀取私匙
PrivateKey myprikey = (PrivateKey) getObjFromFile("mykeys.bat", 1);
// 從文件中讀取公匙
PublicKey mypubkey = (PublicKey) getObjFromFile("mykeys.bat", 2);
try {
// Signature 對象可用來生成和驗證數字簽名
Signature signet = Signature.getInstance("DSA");
// 初始化簽署簽名的私鑰
signet.initSign(myprikey);
// 更新要由位元組簽名或驗證的數據
signet.update(info.getBytes());
// 簽署或驗證所有更新位元組的簽名,返回簽名
byte[] signed = signet.sign();
// 將數字簽名,公匙,信息放入文件中
doObjToFile(signfile, new Object[] { signed, mypubkey, info });
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 讀取數字簽名文件 根據公匙,簽名,信息驗證信息的合法性
*
* @return true 驗證成功 false 驗證失敗
*/
public boolean validateSign(String signfile) {
// 讀取公匙
PublicKey mypubkey = (PublicKey) getObjFromFile(signfile, 2);
// 讀取簽名
byte[] signed = (byte[]) getObjFromFile(signfile, 1);
// 讀取信息
String info = (String) getObjFromFile(signfile, 3);
try {
// 初始一個Signature對象,並用公鑰和簽名進行驗證
Signature signetcheck = Signature.getInstance("DSA");
// 初始化驗證簽名的公鑰
signetcheck.initVerify(mypubkey);
// 使用指定的 byte 數組更新要簽名或驗證的數據
signetcheck.update(info.getBytes());
System.out.println(info);
// 驗證傳入的簽名
return signetcheck.verify(signed);
} catch (Exception e) {
e.printStackTrace();
return false;
}
}
/**
* 將二進制轉化為16進制字元串
*
* @param b
* 二進制位元組數組
* @return String
*/
public String byte2hex(byte[] b) {
String hs = "";
String stmp = "";
for (int n = 0; n < b.length; n++) {
stmp = (java.lang.Integer.toHexString(b[n] & 0XFF));
if (stmp.length() == 1) {
hs = hs + "0" + stmp;
} else {
hs = hs + stmp;
}
}
return hs.toUpperCase();
}
/**
* 十六進制字元串轉化為2進制
*
* @param hex
* @return
*/
public byte[] hex2byte(String hex) {
byte[] ret = new byte[8];
byte[] tmp = hex.getBytes();
for (int i = 0; i < 8; i++) {
ret[i] = uniteBytes(tmp[i * 2], tmp[i * 2 + 1]);
}
return ret;
}
/**
* 將兩個ASCII字元合成一個位元組; 如:"EF"--> 0xEF
*
* @param src0
* byte
* @param src1
* byte
* @return byte
*/
public static byte uniteBytes(byte src0, byte src1) {
byte _b0 = Byte.decode("0x" + new String(new byte[] { src0 }))
.byteValue();
_b0 = (byte) (_b0 << 4);
byte _b1 = Byte.decode("0x" + new String(new byte[] { src1 }))
.byteValue();
byte ret = (byte) (_b0 ^ _b1);
return ret;
}
/**
* 將指定的對象寫入指定的文件
*
* @param file
* 指定寫入的文件
* @param objs
* 要寫入的對象
*/
public void doObjToFile(String file, Object[] objs) {
ObjectOutputStream oos = null;
try {
FileOutputStream fos = new FileOutputStream(file);
oos = new ObjectOutputStream(fos);
for (int i = 0; i < objs.length; i++) {
oos.writeObject(objs[i]);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
oos.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
/**
* 返回在文件中指定位置的對象
*
* @param file
* 指定的文件
* @param i
* 從1開始
* @return
*/
public Object getObjFromFile(String file, int i) {
ObjectInputStream ois = null;
Object obj = null;
try {
FileInputStream fis = new FileInputStream(file);
ois = new ObjectInputStream(fis);
for (int j = 0; j < i; j++) {
obj = ois.readObject();
}
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
ois.close();
} catch (IOException e) {
e.printStackTrace();
}
}
return obj;
}
/**
* 測試
*
* @param args
*/
public static void main(String[] args) {
CryptTest jiami = new CryptTest();
// 執行MD5加密"Hello world!"
System.out.println("Hello經過MD5:" + jiami.encryptToMD5("Hello"));
// 生成一個DES演算法的密匙
SecretKey key = jiami.createSecretKey("DES");
// 用密匙加密信息"Hello world!"
String str1 = jiami.encryptToDES(key, "Hello");
System.out.println("使用des加密信息Hello為:" + str1);
// 使用這個密匙解密
String str2 = jiami.decryptByDES(key, str1);
System.out.println("解密後為:" + str2);
// 創建公匙和私匙
jiami.createPairKey();
// 對Hello world!使用私匙進行簽名
jiami.signToInfo("Hello", "mysign.bat");
// 利用公匙對簽名進行驗證。
if (jiami.validateSign("mysign.bat")) {
System.out.println("Success!");
} else {
System.out.println("Fail!");
}
}
}

⑥ JAVA版MD5加密演算法

package sf_md ;

import java io *;

import java security *;

//import java util *;

//import java security interfaces *;

public class MD _演算法 {

private String inStr;

private MessageDigest mad ;

public MD _演算法(String inStr){

this inStr=inStr;

try{

this mad =MessageDigest getInstance( MD );

}

catch(Exception e){

System out println(e toString());

e printStackTrace();

}

}

public String pute(){

char[] charArray=this inStr toCharArray();

byte[] byteArray=new byte[charArray length];

for(int i= ;i<charArray length;i++)

byteArray[i]=(byte)charArray[i];

byte[] md Bytes=this mad digest(byteArray);

StringBuffer hexValue=new StringBuffer();

for(int i= ;i<md Bytes length;i++){

臘鬧int val=((int)md Bytes[i])& xff;

if(val< )

hexValue append( );

hexValue append(Integer toHexString(val));

}

return hexValue toString();

}

public static void main(String[] args) {

String string=null;

try{

System out println( 請輸入要加密的數據: );

BufferedReader br=new BufferedReader(new InputStreamReader(System in));

判梁string=br readLine();

掘局運}

catch(IOException e){

System out println(e);

}

MD _演算法 md =new MD _演算法(string);

String postString =pute();

System out println( 加密後的數據: +postString);

}

lishixin/Article/program/Java/hx/201311/25613

⑦ 分享Java常用幾種加密演算法

簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD後都能生成唯一的MD值。好比現在的ISO校驗,都是MD校驗。怎麼用?當然是把ISO經過MD後產生MD的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD的串。就是用來驗證文件是否一致的。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。

⑧ 可變MD5加密(Java實現)

可變在這里含義很簡單 就是最終的加密結果是可變的 而非必需按標准MD 加密實現 Java類庫security中的MessageDigest類就提供了MD 加密的支持 實現起來非常方便 為了實現更多效果 我們可以如下設計MD 工具類

Java代碼

package ** ** util;

import java security MessageDigest;

/**

* 標准MD 加密方法 使用java類庫的security包的MessageDigest類處理

* @author Sarin

*/

public class MD {

/**

* 獲得MD 加密密碼的方法

*/

public static String getMD ofStr(String origString) {

String origMD = null;

try {

MessageDigest md = MessageDigest getInstance( MD );

byte[] result = md digest(origString getBytes());

origMD = byteArray HexStr(result);

} catch (Exception e) {

e printStackTrace();

}

return origMD ;

}

/**

* 處理位元組數組得到MD 密碼的方法

*/

private static String byteArray HexStr(byte[] bs) {

StringBuffer *** = new StringBuffer();

for (byte b : bs) {

*** append(byte HexStr(b));

}

return *** toString();

}

/**

* 位元組標准移位轉十六進制方法

*/

private static String byte HexStr(byte b) {

String hexStr = null;

int n = b;

if (n < ) {

//若需要自定義加密 請修改這個移位演算法即可

n = b & x F + ;

}

hexStr = Integer toHexString(n / ) + Integer toHexString(n % );

return hexStr toUpperCase();

}

/**

* 提供一個MD 多次加密方法

*/

public static String getMD ofStr(String origString int times) {

String md = getMD ofStr(origString);

for (int i = ; i < times ; i++) {

md = getMD ofStr(md );

}

return getMD ofStr(md );

}

/**

* 密碼驗證方法

*/

public static boolean verifyPassword(String inputStr String MD Code) {

return getMD ofStr(inputStr) equals(MD Code);

}

/**

* 重載一個多次加密時的密碼驗證方法

*/

public static boolean verifyPassword(String inputStr String MD Code int times) {

return getMD ofStr(inputStr times) equals(MD Code);

}

/**

* 提供一個測試的主函數

*/

public static void main(String[] args) {

System out println( : + getMD ofStr( ));

System out println( : + getMD ofStr( ));

System out println( sarin: + getMD ofStr( sarin ));

System out println( : + getMD ofStr( ));

}

}

可以看出實現的過程非常簡單 因為由java類庫提供了處理支持 但是要清楚的是這種方式產生的密碼不是標準的MD 碼 它需要進行移位處理才能得到標准MD 碼 這個程序的關鍵之處也在這了 怎麼可變?調整移位演算法不就可變了么!不進行移位 也能夠得到 位的密碼 這就不是標准加密了 只要加密和驗證過程使用相同的演算法就可以了

MD 加密還是很安全的 像CMD 那些窮舉破解的只是針對標准MD 加密的結果進行的 如果自定義移位演算法後 它還有效么?可以說是無解的了 所以MD 非常安全可靠

為了更可變 還提供了多次加密的方法 可以在MD 基礎之上繼續MD 就是對 位的第一次加密結果再MD 恩 這樣去破解?沒有任何意義

這樣在MIS系統中使用 安全可靠 歡迎交流 希望對使用者有用

我們最後看看由MD 加密演算法實現的類 那是非常龐大的

Java代碼

import java lang reflect *;

/**

* **********************************************

* md 類實現了RSA Data Security Inc 在提交給IETF

* 的RFC 中的MD message digest 演算法

* ***********************************************

*/

public class MD {

/* 下面這些S S 實際上是一個 * 的矩陣 在原始的C實現中是用#define 實現的

這里把它們實現成為static final是表示了只讀 切能在同一個進程空間內的多個

Instance間共享*/

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final int S = ;

static final byte[] PADDING = {

};

/* 下面的三個成員是MD 計算過程中用到的 個核心數據 在原始的C實現中

被定義到MD _CTX結構中

*/

private long[] state = new long[ ]; // state (ABCD)

private long[] count = new long[ ]; // number of bits molo ^ (l *** first)

private byte[] buffer = new byte[ ]; // input buffer

/* digestHexStr是MD 的唯一一個公共成員 是最新一次計算結果的

進制ASCII表示

*/

public String digestHexStr;

/* digest 是最新一次計算結果的 進制內部表示 表示 bit的MD 值

*/

private byte[] digest = new byte[ ];

/*

getMD ofStr是類MD 最主要的公共方法 入口參數是你想要進行MD 變換的字元串

返回的是變換完的結果 這個結果是從公共成員digestHexStr取得的.

*/

public String getMD ofStr(String inbuf) {

md Init();

md Update(inbuf getBytes() inbuf length());

md Final();

digestHexStr = ;

for (int i = ; i < ; i++) {

digestHexStr += byteHEX(digest[i]);

}

return digestHexStr;

}

// 這是MD 這個類的標准構造函數 JavaBean要求有一個public的並且沒有參數的構造函數

public MD () {

md Init();

return;

}

/* md Init是一個初始化函數 初始化核心變數 裝入標準的幻數 */

private void md Init() {

count[ ] = L;

count[ ] = L;

///* Load magic initialization constants

state[ ] = x L;

state[ ] = xefcdab L;

state[ ] = x badcfeL;

state[ ] = x L;

return;

}

/* F G H I 是 個基本的MD 函數 在原始的MD 的C實現中 由於它們是

簡單的位運算 可能出於效率的考慮把它們實現成了宏 在java中 我們把它們

實現成了private方法 名字保持了原來C中的 */

private long F(long x long y long z) {

return (x & y) | ((~x) & z);

}

private long G(long x long y long z) {

return (x & z) | (y & (~z));

}

private long H(long x long y long z) {

return x ^ y ^ z;

}

private long I(long x long y long z) {

return y ^ (x | (~z));

}

/*

FF GG HH和II將調用F G H I進行近一步變換

FF GG HH and II transformations for rounds and

Rotation is separate from addition to prevent reputation

*/

private long FF(long a long b long c long d long x long s long ac) {

a += F(b c d) + x + ac;

a = ((int) a << s) | ((int) a >>> ( s));

a += b;

return a;

}

private long GG(long a long b long c long d long x long s long ac) {

a += G(b c d) + x + ac;

a = ((int) a << s) | ((int) a >>> ( s));

a += b;

return a;

}

private long HH(long a long b long c long d long x long s long ac) {

a += H(b c d) + x + ac;

a = ((int) a << s) | ((int) a >>> ( s));

a += b;

return a;

}

private long II(long a long b long c long d long x long s long ac) {

a += I(b c d) + x + ac;

a = ((int) a << s) | ((int) a >>> ( s));

a += b;

return a;

}

/*

md Update是MD 的主計算過程 inbuf是要變換的位元組串 inputlen是長度 這個

函數由getMD ofStr調用 調用之前需要調用md init 因此把它設計成private的

*/

private void md Update(byte[] inbuf int inputLen) {

int i index partLen;

byte[] block = new byte[ ];

index = (int) (count[ ] >>> ) & x F;

// /* Update number of bits */

if ((count[ ] += (inputLen << )) < (inputLen << ))

count[ ]++;

count[ ] += (inputLen >>> );

partLen = index;

// Transform as many times as possible

if (inputLen >= partLen) {

md Memcpy(buffer inbuf index partLen);

md Transform(buffer);

for (i = partLen; i + < inputLen; i += ) {

md Memcpy(block inbuf i );

md Transform(block);

}

index = ;

} else

i = ;

///* Buffer remaining input */

md Memcpy(buffer inbuf index i inputLen i);

}

/*

md Final整理和填寫輸出結果

*/

private void md Final() {

byte[] bits = new byte[ ];

int index padLen;

///* Save number of bits */

Encode(bits count );

///* Pad out to mod

index = (int) (count[ ] >>> ) & x f;

padLen = (index < ) ? ( index) : ( index);

md Update(PADDING padLen);

///* Append length (before padding) */

md Update(bits );

///* Store state in digest */

Encode(digest state );

}

/* md Memcpy是一個內部使用的byte數組的塊拷貝函數 從input的inpos開始把len長度的

位元組拷貝到output的outpos位置開始

*/

private void md Memcpy(byte[] output byte[] input int outpos int inpos int len) {

int i;

for (i = ; i < len; i++)

output[outpos + i] = input[inpos + i];

}

/*

md Transform是MD 核心變換程序 有md Update調用 block是分塊的原始位元組

*/

private void md Transform(byte block[]) {

long a = state[ ] b = state[ ] c = state[ ] d = state[ ];

long[] x = new long[ ];

Decode(x block );

/* Round */

a = FF(a b c d x[ ] S xd aa L); /* */

d = FF(d a b c x[ ] S xe c b L); /* */

c = FF(c d a b x[ ] S x dbL); /* */

b = FF(b c d a x[ ] S xc bdceeeL); /* */

a = FF(a b c d x[ ] S xf c fafL); /* */

d = FF(d a b c x[ ] S x c aL); /* */

c = FF(c d a b x[ ] S xa L); /* */

b = FF(b c d a x[ ] S xfd L); /* */

a = FF(a b c d x[ ] S x d L); /* */

d = FF(d a b c x[ ] S x b f afL); /* */

c = FF(c d a b x[ ] S xffff bb L); /* */

b = FF(b c d a x[ ] S x cd beL); /* */

a = FF(a b c d x[ ] S x b L); /* */

d = FF(d a b c x[ ] S xfd L); /* */

c = FF(c d a b x[ ] S xa eL); /* */

b = FF(b c d a x[ ] S x b L); /* */

/* Round */

a = GG(a b c d x[ ] S xf e L); /* */

d = GG(d a b c x[ ] S xc b L); /* */

c = GG(c d a b x[ ] S x e a L); /* */

b = GG(b c d a x[ ] S xe b c aaL); /* */

a = GG(a b c d x[ ] S xd f dL); /* */

d = GG(d a b c x[ ] S x L); /* */

c = GG(c d a b x[ ] S xd a e L); /* */

b = GG(b c d a x[ ] S xe d fbc L); /* */

a = GG(a b c d x[ ] S x e cde L); /* */

d = GG(d a b c x[ ] S xc d L); /* */

c = GG(c d a b x[ ] S xf d d L); /* */

b = GG(b c d a x[ ] S x a edL); /* */

a = GG(a b c d x[ ] S xa e e L); /* */

d = GG(d a b c x[ ] S xfcefa f L); /* */

c = GG(c d a b x[ ] S x f d L); /* */

b = GG(b c d a x[ ] S x d a c aL); /* */

/* Round */

a = HH(a b c d x[ ] S xfffa L); /* */

d = HH(d a b c x[ ] S x f L); /* */

c = HH(c d a b x[ ] S x d d L); /* */

b = HH(b c d a x[ ] S xfde cL); /* */

a = HH(a b c d x[ ] S xa beea L); /* */

d = HH(d a b c x[ ] S x bdecfa L); /* */

c = HH(c d a b x[ ] S xf bb b L); /* */

b = HH(b c d a x[ ] S xbebfbc L); /* */

a = HH(a b c d x[ ] S x b ec L); /* */

d = HH(d a b c x[ ] S xeaa faL); /* */

c = HH(c d a b x[ ] S xd ef L); /* */

b = HH(b c d a x[ ] S x d L); /* */

a = HH(a b c d x[ ] S xd d d L); /* */

d = HH(d a b c x[ ] S xe db e L); /* */

c = HH(c d a b x[ ] S x fa cf L); /* */

b = HH(b c d a x[ ] S xc ac L); /* */

/* Round */

a = II(a b c d x[ ] S xf L); /* */

d = II(d a b c x[ ] S x aff L); /* */

c = II(c d a b x[ ] S xab a L); /* */

b = II(b c d a x[ ] S xfc a L); /* */

a = II(a b c d x[ ] S x b c L); /* */

d = II(d a b c x[ ] S x f ccc L); /* */

c = II(c d a b x[ ] S xffeff dL); /* */

b = II(b c d a x[ ] S x dd L); /* */

a = II(a b c d x[ ] S x fa e fL); /* */

d = II(d a b c x[ ] S xfe ce e L); /* */

c = II(c d a b x[ ] S xa L); /* */

b = II(b c d a x[ ] S x e a L); /* */

a = II(a b c d x[ ] S xf e L); /* */

d = II(d a b c x[ ] S xbd af L); /* */

c = II(c d a b x[ ] S x ad d bbL); /* */

b = II(b c d a x[ ] S xeb d L); /* */

state[ ] += a;

state[ ] += b;

state[ ] += c;

state[ ] += d;

}

/*Encode把long數組按順序拆成byte數組 因為java的long類型是 bit的

只拆低 bit 以適應原始C實現的用途

*/

private void Encode(byte[] output long[] input int len) {

int i j;

for (i = j = ; j < len; i++ j += ) {

output[j] = (byte) (input[i] & xffL);

output[j + ] = (byte) ((input[i] >>> ) & xffL);

output[j + ] = (byte) ((input[i] >>> ) & xffL);

output[j + ] = (byte) ((input[i] >>> ) & xffL);

}

}

/*Decode把byte數組按順序合成成long數組 因為java的long類型是 bit的

只合成低 bit 高 bit清零 以適應原始C實現的用途

*/

private void Decode(long[] output byte[] input int len) {

int i j;

for (i = j = ; j < len; i++ j += )

output[i] = b iu(input[j]) | (b iu(input[j + ]) << ) | (b iu(input[j + ]) << )

| (b iu(input[j + ]) << );

return;

}

/*

b iu是我寫的一個把byte按照不考慮正負號的原則的"升位"程序 因為java沒有unsigned運算

*/

public static long b iu(byte b) {

return b < ? b & x F + : b;

}

/*byteHEX() 用來把一個byte類型的數轉換成十六進制的ASCII表示

因為java中的byte的toString無法實現這一點 我們又沒有C語言中的

sprintf(outbuf % X ib)

*/

public static String byteHEX(byte ib) {

char[] Digit = { A B C D E F };

char[] ob = new char[ ];

ob[ ] = Digit[(ib >>> ) & X F];

ob[ ] = Digit[ib & X F];

String s = new String(ob);

return s;

}

public static void main(String args[]) {

MD m = new MD ();

if (Array getLength(args) == ) { //如果沒有參數 執行標準的Test Suite

System out println( MD Test suite: );

System out println( MD ( ): + m getMD ofStr( ));

System out println( MD ( a ): + m getMD ofStr( a ));

System out println( MD ( abc ): + m getMD ofStr( abc ));

System out println( MD ( ): + m getMD ofStr( ));

System out println( MD ( ): + m getMD ofStr( ));

System out println( MD ( message digest ): + m getMD ofStr( message digest ));

System out println( MD ( abcdefghijklmnopqrstuvwxyz ): + m getMD ofStr( abcdefghijklmnopqrstuvwxyz ));

System out println( MD ( ):

+ m getMD ofStr( ));

} else

System out println( MD ( + args[ ] + )= + m getMD ofStr(args[ ]));

}

lishixin/Article/program/Java/hx/201311/26604

⑨ java加密的幾種方式

朋友你好,很高興為你作答。

首先,Java加密能夠應對的風險包括以下幾個:

1、核心技術竊取

2、核心業務破解

3、通信模塊破解

4、API介面暴露

本人正在使用幾維安全Java加密方式,很不錯,向你推薦,希望能夠幫助到你。

幾維安全Java2C針對DEX文件進行加密保護,將DEX文件中標記的Java代碼翻譯為C代碼,編譯成加固後的SO文件。默認情況只加密activity中的onCreate函數,如果開發者想加密其它類和方法,只需對相關類或函數添加標記代碼,在APK加密時會自動對標記的代碼進行加密處理。

與傳統的APP加固方案相比,不涉及到自定義修改DEX文件的載入方式,所以其兼容性非常好;其次Java函數被完全轉化為C函數,直接在Native層執行,不存在Java層解密執行的步驟,其性能和執行效率更優。

如果操作上有不明白的地方,可以聯系技術支持人員幫你完成Java加密。

希望以上解答能夠幫助到你。

熱點內容
哈利波特不同伺服器有什麼不同 發布:2024-11-27 22:33:45 瀏覽:77
鎖ip伺服器 發布:2024-11-27 22:31:48 瀏覽:176
腳本刷精粹 發布:2024-11-27 22:30:31 瀏覽:991
電腦定時清理文件的腳本 發布:2024-11-27 22:27:49 瀏覽:996
安卓系統傳奇哪個好玩 發布:2024-11-27 22:26:17 瀏覽:253
oracle存儲過程重命名 發布:2024-11-27 22:12:51 瀏覽:547
串口伺服器幾個ip 發布:2024-11-27 21:58:21 瀏覽:325
麥芒5腳本 發布:2024-11-27 21:45:33 瀏覽:848
dnf龍貓腳本 發布:2024-11-27 21:45:15 瀏覽:959
macoutlook存儲位置設置 發布:2024-11-27 21:35:15 瀏覽:810