java排序快速排序
『壹』 如何用java實現快速排序,簡答講解下原理
快速排序思想:
通過對數據元素集合Rn 進行一趟排序劃分出獨立的兩個部分。其中一個部分的關鍵字比另一部分的關鍵字小。然後再分別對兩個部分的關鍵字進行一趟排序,直到獨立的元素只有一個,此時整個元素集合有序。
快速排序的過程,對一個元素集合R[ low ... high ] ,首先取一個數(一般是R[low] )做參照 , 以R[low]為基準重新排列所有的元素。
所有比R[low]小的放前面,所有比R[low] 大的放後面,然後以R[low]為分界,對R[low ... high] 劃分為兩個子集和,再做劃分。直到low >= high 。
比如:對R={37, 40, 38, 42, 461, 5, 7, 9, 12}進行一趟快速排序的過程如下(注:下面描述的內容中元素下表從 0 開始):
開始選取基準 base = 37,初始位置下表 low = 0 , high = 8 , 從high=8,開始如果R[8] < base , 將high位置中的內容寫入到R[low]中, 將high位置空出來, low = low +1 ;
從low開始探測,由於low=1 , R[low] > base ,所以將R[low]寫入到R[high] , high = high -1 ;
檢測到low < high ,所以第一趟快速排序仍需繼續:
此時low=1,high=7,因為 R[high] < base ,所以將 R[high] 寫入到到R[low]中,low = low + 1;
從low開始探測,low = 2 , R[low] >base ,所以講R[low]寫入到R[high],high=high-1;
繼續檢測到 low 小於high
此時low=2,high=6,同理R[high] < base ,將R[high] 寫入到R[low]中,low=low+1;
從low繼續探測,low = 3 , high=6 , R[low] > base , 將R[low]寫入到R[high]中,high = high-1;
繼續探測到low小於high
此時low=3,high=5,同理R[high] < base,將R[high]寫入到R[low]中,low = low +1;
從low繼續探測,low = 4,high=5,由於R[low] > base , 將R[low]寫入到R[high]中,high = high -1 ;
此時探測到low == high == 4 ;該位置即是base所在的位置,將base寫入到該位置中.
然後再對子序列Rs1 = {12,9,7,5} 和 Rs2={461,42,38,40}做一趟快速排序,直到Rsi中只有一個元素,或沒有元素。
快速排序的Java實現:
private static boolean isEmpty(int[] n) {
return n == null || n.length == 0;
}
// ///////////////////////////////////////////////////
/**
* 快速排序演算法思想——挖坑填數方法:
*
* @param n 待排序的數組
*/
public static void quickSort(int[] n) {
if (isEmpty(n))
return;
quickSort(n, 0, n.length - 1);
}
public static void quickSort(int[] n, int l, int h) {
if (isEmpty(n))
return;
if (l < h) {
int pivot = partion(n, l, h);
quickSort(n, l, pivot - 1);
quickSort(n, pivot + 1, h);
}
}
private static int partion(int[] n, int start, int end) {
int tmp = n[start];
while (start < end) {
while (n[end] >= tmp && start < end)
end--;
if (start < end) {
n[start++] = n[end];
}
while (n[start] < tmp && start < end)
start++;
if (start < end) {
n[end--] = n[start];
}
}
n[start] = tmp;
return start;
}
在代碼中有這樣一個函數:
public static void quickSortSwap(int[] n, int l, int h)
該函數可以實現,元素集合中特定的 l 到 h 位置間的數據元素進行排序。
『貳』 java實現幾種常見排序演算法
下面給你介紹四種常用排序演算法:
1、冒泡排序
特點:效率低,實現簡單
思想(從小到大排):每一趟將待排序序列中最大元素移到最後,剩下的為新的待排序序列,重復上述步驟直到排完所有元素。這只是冒泡排序的一種,當然也可以從後往前排。
『叄』 數據結構 java開發中常用的排序演算法有哪些
排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。
主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序
一、冒泡(Bubble)排序
----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。
二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。
三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。
四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。
五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。
七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。
堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。
『肆』 java快速排序簡單代碼
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序演算法是《數據結構與演算法》中最基本的演算法之一。排序演算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序演算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸並排序、快速排序、堆排序、基數排序等。以下是快速排序演算法:
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
快速排序又是一種分而治之思想在排序演算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。
快速排序的名字起的是簡單粗暴,因為一聽到這個名字你就知道它存在的意義,就是快,而且效率高!它是處理大數據最快的排序演算法之一了。雖然 Worst Case 的時間復雜度達到了 O(n?),但是人家就是優秀,在大多數情況下都比平均時間復雜度為 O(n logn) 的排序演算法表現要更好,可是這是為什麼呢,我也不知道。好在我的強迫症又犯了,查了 N 多資料終於在《演算法藝術與信息學競賽》上找到了滿意的答案:
快速排序的最壞運行情況是 O(n?),比如說順序數列的快排。但它的平攤期望時間是 O(nlogn),且 O(nlogn) 記號中隱含的常數因子很小,比復雜度穩定等於 O(nlogn) 的歸並排序要小很多。所以,對絕大多數順序性較弱的隨機數列而言,快速排序總是優於歸並排序。
1. 演算法步驟
從數列中挑出一個元素,稱為 "基準"(pivot);
重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作;
遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序;
2. 動圖演示
代碼實現 JavaScript 實例 function quickSort ( arr , left , right ) {
var len = arr. length ,
partitionIndex ,
left = typeof left != 'number' ? 0 : left ,
right = typeof right != 'number' ? len - 1 : right ;
if ( left
『伍』 java編程實現隨機數組的快速排序
java編程實現隨機數組的快速排序步驟如下:
1、打開Eclipse,新建一個Java工程,在此工程里新建一個Java類;
2、在新建的類中聲明一個產生隨機數的Random變數,再聲明一個10個長度的int型數組;
3、將產生的隨機數逐個放入到數組中;
4、利用排序演算法對隨機數組進行排序。
具體代碼如下:
importjava.util.Random;
publicclassDemo{
publicstaticvoidmain(String[]args){
intcount=0;
Randomrandom=newRandom();
inta[]=newint[10];
while(count<10){
a[count]=random.nextInt(1000);//產生0-999的隨機數
count++;
}
for(inti=0;i<a.length-1;i++){
intmin=i;
for(intj=i+1;j<a.length;j++){
if(a[j]<a[min]){
min=j;
}
}
if(min!=i){
intb=a[min];
a[min]=a[i];
a[i]=b;
}
}
for(intc=0;c<a.length;c++){
System.out.print(a[c]+"");
}
}
}
『陸』 java怎麼實現排序
Java實現幾種常見排序方法
日常操作中常見的排序方法有:冒泡排序、快速排序、選擇排序、插入排序、希爾排序,甚至還有基數排序、雞尾酒排序、桶排序、鴿巢排序、歸並排序等。
以下常見演算法的定義
1. 插入排序:插入排序基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。插入排序的基本思想是:每步將一個待排序的紀錄,按其關鍵碼值的大小插入前面已經排序的文件中適當位置上,直到全部插入完為止。
2. 選擇排序:選擇排序(Selection sort)是一種簡單直觀的排序演算法。它的工作原理是每一次從待排序的數據元素中選出最小(或最大)的一個元素,存放在序列的起始位置,直到全部待排序的數據元素排完。 選擇排序是不穩定的排序方法。
3. 冒泡排序:冒泡排序(Bubble Sort),是一種計算機科學領域的較簡單的排序演算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越大的元素會經由交換慢慢「浮」到數列的頂端。
4. 快速排序:快速排序(Quicksort)是對冒泡排序的一種改進。它的基本思想是:通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
5. 歸並排序:歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
6. 希爾排序:希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法便終止。
https://www.cnblogs.com/wangmingshun/p/5635292.html
『柒』 如何理解java數據結構中的快速排序方法
原理:
快速排序也是分治法思想的一種實現,他的思路是使數組中的每個元素與基準值(Pivot,通常是數組的首個值,A[0])比較,數組中比基準值小的放在基準值的左邊,形成左部;大的放在右邊,形成右部;接下來將左部和右部分別遞歸地執行上面的過程:選基準值,小的放在左邊,大的放在右邊。。。直到排序結束。
步驟:
1.找基準值,設Pivot = a[0]
2.分區(Partition):比基準值小的放左邊,大的放右邊,基準值(Pivot)放左部與右部的之間。
3.進行左部(a[0] - a[pivot-1])的遞歸,以及右部(a[pivot+1] - a[n-1])的遞歸,重復上述步驟。
排序效果:
『捌』 Java通過幾種經典的演算法來實現數組排序
JAVA中在運用數組進行排序功能時,一般有四種方法:快速排序法、冒泡法、選擇排序法、插入排序法。
快速排序法主要是運用了Arrays中的一個方法Arrays.sort()實現。
冒泡法是運用遍歷數組進行比較,通過不斷的比較將最小值或者最大值一個一個的遍歷出來。
選擇排序法是將數組的第一個數據作為最大或者最小的值,然後通過比較循環,輸出有序的數組。
插入排序是選擇一個數組中的數據,通過不斷的插入比較最後進行排序。下面我就將他們的實現方法一一詳解供大家參考。
<1>利用Arrays帶有的排序方法快速排序
public class Test2{ public static void main(String[] args){ int[] a={5,4,2,4,9,1}; Arrays.sort(a); //進行排序 for(int i: a){ System.out.print(i); } } }
<2>冒泡排序演算法
public static int[] bubbleSort(int[] args){//冒泡排序演算法 for(int i=0;i<args.length-1;i++){ for(int j=i+1;j<args.length;j++){ if (args[i]>args[j]){ int temp=args[i]; args[i]=args[j]; args[j]=temp; } } } return args; }
<3>選擇排序演算法
public static int[] selectSort(int[] args){//選擇排序演算法 for (int i=0;i<args.length-1 ;i++ ){ int min=i; for (int j=i+1;j<args.length ;j++ ){ if (args[min]>args[j]){ min=j; } } if (min!=i){ int temp=args[i]; args[i]=args[min]; args[min]=temp; } } return args; }
<4>插入排序演算法
public static int[] insertSort(int[] args){//插入排序演算法 for(int i=1;i<args.length;i++){ for(int j=i;j>0;j--){ if (args[j]<args[j-1]){ int temp=args[j-1]; args[j-1]=args[j]; args[j]=temp; }else break; } } return args; }