python做回歸分析
❶ python數據分析用什麼軟體
Python是數據處理常用工具,可以處理數量級從幾K至幾T不等的數據,具有較高的開發效率和可維護性,還具有較強的通用性和跨平台性,這里就為大家分享幾個不錯的數據分析工具。Python數據分析需要安裝的第三方擴展庫有:Numpy、Pandas、SciPy、Matplotpb、Scikit-Learn、Keras、Gensim、Scrapy等,以下是第三方擴展庫的簡要介紹:(推薦學習:Python視頻教程)
1. Pandas
Pandas是Python強大、靈活的數據分析和探索工具,包含Series、DataFrame等高級數據結構和工具,安裝Pandas可使Python中處理數據非常快速和簡單。
Pandas是Python的一個數據分析包,Pandas最初被用作金融數據分析工具而開發出來,因此Pandas為時間序列分析提供了很好的支持。
Pandas是為了解決數據分析任務而創建的,Pandas納入了大量的庫和一些標準的數據模型,提供了高效的操作大型數據集所需要的工具。Pandas提供了大量是我們快速便捷的處理數據的函數和方法。Pandas包含了高級數據結構,以及讓數據分析變得快速、簡單的工具。它建立在Numpy之上,使得Numpy應用變得簡單。
帶有坐標軸的數據結構,支持自動或明確的數據對齊。這能防止由於數據結構沒有對齊,以及處理不同來源、採用不同索引的數據而產生的常見錯誤。
使用Pandas更容易處理丟失數據。合並流行資料庫(如:基於SQL的資料庫)Pandas是進行數據清晰/整理的最好工具。
2. Numpy
Python沒有提供數組功能,Numpy可以提供數組支持以及相應的高效處理函數,是Python數據分析的基礎,也是SciPy、Pandas等數據處理和科學計算庫最基本的函數功能庫,且其數據類型對Python數據分析十分有用。
Numpy提供了兩種基本的對象:ndarray和ufunc。ndarray是存儲單一數據類型的多維數組,而ufunc是能夠對數組進行處理的函數。Numpy的功能:
N維數組,一種快速、高效使用內存的多維數組,他提供矢量化數學運算。可以不需要使用循環,就能對整個數組內的數據進行標准數學運算。非常便於傳送數據到用低級語言編寫(CC++)的外部庫,也便於外部庫以Numpy數組形式返回數據。
Numpy不提供高級數據分析功能,但可以更加深刻的理解Numpy數組和面向數組的計算。
3. Matplotpb
Matplotpb是強大的數據可視化工具和作圖庫,是主要用於繪制數據圖表的Python庫,提供了繪制各類可視化圖形的命令字型檔、簡單的介面,可以方便用戶輕松掌握圖形的格式,繪制各類可視化圖形。
Matplotpb是Python的一個可視化模塊,他能方便的只做線條圖、餅圖、柱狀圖以及其他專業圖形。 使用Matplotpb,可以定製所做圖表的任一方面。他支持所有操作系統下不同的GUI後端,並且可以將圖形輸出為常見的矢量圖和圖形測試,如PDF SVG JPG PNG BMP GIF.通過數據繪圖,我們可以將枯燥的數字轉化成人們容易接收的圖表。 Matplotpb是基於Numpy的一套Python包,這個包提供了吩咐的數據繪圖工具,主要用於繪制一些統計圖形。 Matplotpb有一套允許定製各種屬性的默認設置,可以控制Matplotpb中的每一個默認屬性:圖像大小、每英寸點數、線寬、色彩和樣式、子圖、坐標軸、網個屬性、文字和文字屬性。
4. SciPy
SciPy是一組專門解決科學計算中各種標准問題域的包的集合,包含的功能有最優化、線性代數、積分、插值、擬合、特殊函數、快速傅里葉變換、信號處理和圖像處理、常微分方程求解和其他科學與工程中常用的計算等,這些對數據分析和挖掘十分有用。
Scipy是一款方便、易於使用、專門為科學和工程設計的Python包,它包括統計、優化、整合、線性代數模塊、傅里葉變換、信號和圖像處理、常微分方程求解器等。Scipy依賴於Numpy,並提供許多對用戶友好的和有效的數值常式,如數值積分和優化。
Python有著像Matlab一樣強大的數值計算工具包Numpy;有著繪圖工具包Matplotpb;有著科學計算工具包Scipy。 Python能直接處理數據,而Pandas幾乎可以像SQL那樣對數據進行控制。Matplotpb能夠對數據和記過進行可視化,快速理解數據。Scikit-Learn提供了機器學習演算法的支持,Theano提供了升讀學習框架(還可以使用CPU加速)。
5. Keras
Keras是深度學習庫,人工神經網路和深度學習模型,基於Theano之上,依賴於Numpy和Scipy,利用它可以搭建普通的神經網路和各種深度學習模型,如語言處理、圖像識別、自編碼器、循環神經網路、遞歸審計網路、卷積神經網路等。
6. Scikit-Learn
Scikit-Learn是Python常用的機器學習工具包,提供了完善的機器學習工具箱,支持數據預處理、分類、回歸、聚類、預測和模型分析等強大機器學習庫,其依賴於Numpy、Scipy和Matplotpb等。
Scikit-Learn是基於Python機器學習的模塊,基於BSD開源許可證。 Scikit-Learn的安裝需要Numpy S Matplotpb等模塊,Scikit-Learn的主要功能分為六個部分,分類、回歸、聚類、數據降維、模型選擇、數據預處理。
Scikit-Learn自帶一些經典的數據集,比如用於分類的iris和digits數據集,還有用於回歸分析的boston house prices數據集。該數據集是一種字典結構,數據存儲在.data成員中,輸出標簽存儲在.target成員中。Scikit-Learn建立在Scipy之上,提供了一套常用的機器學習演算法,通過一個統一的介面來使用,Scikit-Learn有助於在數據集上實現流行的演算法。 Scikit-Learn還有一些庫,比如:用於自然語言處理的Nltk、用於網站數據抓取的Scrappy、用於網路挖掘的Pattern、用於深度學習的Theano等。
7. Scrapy
Scrapy是專門為爬蟲而生的工具,具有URL讀取、HTML解析、存儲數據等功能,可以使用Twisted非同步網路庫來處理網路通訊,架構清晰,且包含了各種中間件介面,可以靈活的完成各種需求。
8. Gensim
Gensim是用來做文本主題模型的庫,常用於處理語言方面的任務,支持TF-IDF、LSA、LDA和Word2Vec在內的多種主題模型演算法,支持流式訓練,並提供了諸如相似度計算、信息檢索等一些常用任務的API介面。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python數據分析用什麼軟體的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
❷ 使用Python的線性回歸問題,怎麼解決
本文中,我們將進行大量的編程——但在這之前,我們先介紹一下我們今天要解決的實例問題。
1) 預測房子價格
閃電俠是一部由劇作家/製片人Greg Berlanti、Andrew Kreisberg和Geoff Johns創作,由CW電視台播放的美國電視連續劇。它基於DC漫畫角色閃電俠(Barry Allen),一個具有超人速度移動能力的裝扮奇特的打擊犯罪的超級英雄,這個角色是由Robert Kanigher、John Broome和Carmine Infantino創作。它是綠箭俠的衍生作品,存在於同一世界。該劇集的試播篇由Berlanti、Kreisberg和Johns寫作,David Nutter執導。該劇集於2014年10月7日在北美首映,成為CW電視台收視率最高的電視節目。
綠箭俠是一部由劇作家/製片人 Greg Berlanti、Marc Guggenheim和Andrew Kreisberg創作的電視連續劇。它基於DC漫畫角色綠箭俠,一個由Mort Weisinger和George Papp創作的裝扮奇特的犯罪打擊戰士。它於2012年10月10日在北美首映,與2012年末開始全球播出。主要拍攝於Vancouver、British Columbia、Canada,該系列講述了億萬花花公子Oliver Queen,由Stephen Amell扮演,被困在敵人的島嶼上五年之後,回到家鄉打擊犯罪和腐敗,成為一名武器是弓箭的神秘義務警員。不像漫畫書中,Queen最初沒有使用化名」綠箭俠「。
由於這兩個節目並列為我最喜愛的電視節目頭銜,我一直想知道哪個節目更受其他人歡迎——誰會最終贏得這場收視率之戰。 所以讓我們寫一個程序來預測哪個電視節目會有更多觀眾。 我們需要一個數據集,給出每一集的觀眾。幸運地,我從維基網路上得到了這個數據,並整理成一個.csv文件。它如下所示。
閃電俠
閃電俠美國觀眾數
綠箭俠
綠箭俠美國觀眾數
1 4.83 1 2.84
2 4.27 2 2.32
3 3.59 3 2.55
4 3.53 4 2.49
5 3.46 5 2.73
6 3.73 6 2.6
7 3.47 7 2.64
8 4.34 8 3.92
9 4.66 9 3.06
觀眾數以百萬為單位。
解決問題的步驟:
首先我們需要把數據轉換為X_parameters和Y_parameters,不過這里我們有兩個X_parameters和Y_parameters。因此,把他們命名為flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter吧。然後我們需要把數據擬合為兩個不同的線性回歸模型——先是閃電俠,然後是綠箭俠。 接著我們需要預測兩個電視節目下一集的觀眾數量。 然後我們可以比較結果,推測哪個節目會有更多觀眾。
步驟1
導入我們的程序包:
Python
1
2
3
4
5
6
7
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
步驟2
寫一個函數,把我們的數據集作為輸入,返回flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter values。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
現在我們有了我們的參數,來寫一個函數,用上面這些參數作為輸入,給出一個輸出,預測哪個節目會有更多觀眾。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
把所有東西寫在一個文件中。打開你的編輯器,把它命名為prediction.py,復制下面的代碼到prediction.py中。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
x1,y1,x2,y2 = get_data('input_data.csv')
#print x1,y1,x2,y2
more_viewers(x1,y1,x2,y2)
可能你能猜出哪個節目會有更多觀眾——但運行一下這個程序看看你猜的對不對。
3) 替換數據集中的缺失值
有時候,我們會遇到需要分析包含有缺失值的數據的情況。有些人會把這些缺失值捨去,接著分析;有些人會用最大值、最小值或平均值替換他們。平均值是三者中最好的,但可以用線性回歸來有效地替換那些缺失值。
這種方法差不多像這樣進行。
首先我們找到我們要替換那一列里的缺失值,並找出缺失值依賴於其他列的哪些數據。把缺失值那一列作為Y_parameters,把缺失值更依賴的那些列作為X_parameters,並把這些數據擬合為線性回歸模型。現在就可以用缺失值更依賴的那些列預測缺失的那一列。
一旦這個過程完成了,我們就得到了沒有任何缺失值的數據,供我們自由地分析數據。
為了練習,我會把這個問題留給你,所以請從網上獲取一些缺失值數據,解決這個問題。一旦你完成了請留下你的評論。我很想看看你的結果。
個人小筆記:
我想分享我個人的數據挖掘經歷。記得在我的數據挖掘引論課程上,教師開始很慢,解釋了一些數據挖掘可以應用的領域以及一些基本概念。然後突然地,難度迅速上升。這令我的一些同學感到非常沮喪,被這個課程嚇到,終於扼殺了他們對數據挖掘的興趣。所以我想避免在我的博客文章中這樣做。我想讓事情更輕松隨意。因此我嘗試用有趣的例子,來使讀者更舒服地學習,而不是感到無聊或被嚇到。
謝謝讀到這里——請在評論框里留下你的問題或建議,我很樂意回復你。
❸ 誰會多項式logistic回歸分析
不知道你想基於什麼軟體進行 多項式logistic回歸分析,這里提供兩種:
1、Python
使用statsmodels包中的MNLogit模塊
2、Minitab
❹ python怎麼做大數據分析
數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
❺ python中有哪些簡單的演算法
首先謝謝邀請,
python中有的演算法還是比較多的?
python之所以火是因為人工智慧的發展,人工智慧的發展離不開演算法!
感覺有本書比較適合你,不過可惜的是這本書沒有電子版,只有紙質的。
這本書對於演算法從基本的入門到實現,循序漸進的介紹,比如裡面就涵蓋了數學建模的常用演算法。
第 1章從數學建模到人工智慧
1.1數學建模1.1.1數學建模與人工智慧1.1.2數學建模中的常見問題1.2人工智慧下的數學1.2.1統計量1.2.2矩陣概念及運算1.2.3概率論與數理統計1.2.4高等數學——導數、微分、不定積分、定積分
第2章 Python快速入門
2.1安裝Python2.1.1Python安裝步驟2.1.2IDE的選擇2.2Python基本操作2.2.1第 一個小程序2.2.2注釋與格式化輸出2.2.3列表、元組、字典2.2.4條件語句與循環語句2.2.5break、continue、pass2.3Python高級操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科學計算庫NumPy
3.1NumPy簡介與安裝3.1.1NumPy簡介3.1.2NumPy安裝3.2基本操作3.2.1初識NumPy3.2.2NumPy數組類型3.2.3NumPy創建數組3.2.4索引與切片3.2.5矩陣合並與分割3.2.6矩陣運算與線性代數3.2.7NumPy的廣播機制3.2.8NumPy統計函數3.2.9NumPy排序、搜索3.2.10NumPy數據的保存
第4章常用科學計算模塊快速入門
4.1Pandas科學計算庫4.1.1初識Pandas4.1.2Pandas基本操作4.2Matplotlib可視化圖庫4.2.1初識Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib繪圖案例4.3SciPy科學計算庫4.3.1初識SciPy4.3.2SciPy基本操作4.3.3SciPy圖像處理案例第5章Python網路爬蟲5.1爬蟲基礎5.1.1初識爬蟲5.1.2網路爬蟲的演算法5.2爬蟲入門實戰5.2.1調用API5.2.2爬蟲實戰5.3爬蟲進階—高效率爬蟲5.3.1多進程5.3.2多線程5.3.3協程5.3.4小結
第6章Python數據存儲
6.1關系型資料庫MySQL6.1.1初識MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初識NoSQL6.2.2Python操作MongoDB6.3本章小結6.3.1資料庫基本理論6.3.2資料庫結合6.3.3結束語
第7章Python數據分析
7.1數據獲取7.1.1從鍵盤獲取數據7.1.2文件的讀取與寫入7.1.3Pandas讀寫操作7.2數據分析案例7.2.1普查數據統計分析案例7.2.2小結
第8章自然語言處理
8.1Jieba分詞基礎8.1.1Jieba中文分詞8.1.2Jieba分詞的3種模式8.1.3標注詞性與添加定義詞8.2關鍵詞提取8.2.1TF-IDF關鍵詞提取8.2.2TextRank關鍵詞提取8.3word2vec介紹8.3.1word2vec基礎原理簡介8.3.2word2vec訓練模型8.3.3基於gensim的word2vec實戰
第9章從回歸分析到演算法基礎
9.1回歸分析簡介9.1.1「回歸」一詞的來源9.1.2回歸與相關9.1.3回歸模型的劃分與應用9.2線性回歸分析實戰9.2.1線性回歸的建立與求解9.2.2Python求解回歸模型案例9.2.3檢驗、預測與控制
第10章 從K-Means聚類看演算法調參
10.1K-Means基本概述10.1.1K-Means簡介10.1.2目標函數10.1.3演算法流程10.1.4演算法優缺點分析10.2K-Means實戰
第11章 從決策樹看演算法升級
11.1決策樹基本簡介11.2經典演算法介紹11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系數11.2.5小結11.3決策樹實戰11.3.1決策樹回歸11.3.2決策樹的分類
第12章 從樸素貝葉斯看演算法多變193
12.1樸素貝葉斯簡介12.1.1認識樸素貝葉斯12.1.2樸素貝葉斯分類的工作過程12.1.3樸素貝葉斯演算法的優缺點12.23種樸素貝葉斯實戰
第13章 從推薦系統看演算法場景
13.1推薦系統簡介13.1.1推薦系統的發展13.1.2協同過濾13.2基於文本的推薦13.2.1標簽與知識圖譜推薦案例13.2.2小結
第14章 從TensorFlow開啟深度學習之旅
14.1初識TensorFlow14.1.1什麼是TensorFlow14.1.2安裝TensorFlow14.1.3TensorFlow基本概念與原理14.2TensorFlow數據結構14.2.1階14.2.2形狀14.2.3數據類型14.3生成數據十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成隨機數14.4TensorFlow實戰
希望對你有幫助!!!
貴在堅持,自己掌握一些,在工作中不斷打磨,高薪不是夢!!
❻ 如何用Python進行線性回歸以及誤差分析
數據挖掘中的預測問題通常分為2類:回歸與分類。
簡單的說回歸就是預測數值,而分類是給數據打上標簽歸類。
本文講述如何用Python進行基本的數據擬合,以及如何對擬合結果的誤差進行分析。
本例中使用一個2次函數加上隨機的擾動來生成500個點,然後嘗試用1、2、100次方的多項式對該數據進行擬合。
擬合的目的是使得根據訓練數據能夠擬合出一個多項式函數,這個函數能夠很好的擬合現有數據,並且能對未知的數據進行預測。
代碼如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 數據生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方誤差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 與均值相比的優秀程度,介於[0~1]。0表示不如均值。1表示完美預測.這個版本的實現是參考scikit-learn官網文檔 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 這是Conway&White《機器學習使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
該程序運行的顯示結果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90