利用python進行數據分析pdf
⑴ python金融大數據分析 百度雲盤pdf
鏈接:http://pan..com/s/1djPqbCXnQrRpW0dgi2MCJg
華爾街學堂 python金融實務從入門到精通。最近,越來越多的研究員、基金經理甚至財務會計領域的朋友,向小編咨詢:金融人需要學Python么?事實上在現在,這已經不是一個問題了。Python已成為國內很多頂級投行、基金、咨詢等泛金融、商科領域的必備技能。中金公司、銀河證券、南方基金、銀華基金在招聘分析師崗位時,紛紛要求熟練掌握Python數據分析技能。
課程目錄:
Python在金融資管領域中的應用
安裝anaconda步驟
Python基礎知識
Python基礎金融分析應用
成為編程能手:Python知識進階
利用Python實現金融數據收集、分析與可視化
......
⑵ 誰有利用python進行數據分析 pdf 的中文 完整版的,求發一下
鏈接:
提取碼:z8fs復制這段內容後打開網路網盤手機App,操作更方便哦
作品簡介:
Python由荷蘭數學和計算機科學研究學會的GuidovanRossum於1990年代初設計,作為一門叫做ABC語言的替代品。
⑶ python怎麼做大數據分析
數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
⑷ 數據分析員用python做數據分析是怎麼回事,需要用到python中的那些內容,具體是怎麼操作的
最近,Analysis with Programming加入了Planet Python。我這里來分享一下如何通過Python來開始數據分析。具體內容如下:
數據導入
導入本地的或者web端的CSV文件;
數據變換;
數據統計描述;
假設檢驗
單樣本t檢驗;
可視化;
創建自定義函數。
數據導入
1
這是很關鍵的一步,為了後續的分析我們首先需要導入數據。通常來說,數據是CSV格式,就算不是,至少也可以轉換成CSV格式。在Python中,我們的操作如下:
import pandas as pd
# Reading data locally
df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')
# Reading data from web
data_url = "https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"
df = pd.read_csv(data_url)
為了讀取本地CSV文件,我們需要pandas這個數據分析庫中的相應模塊。其中的read_csv函數能夠讀取本地和web數據。
1
既然在工作空間有了數據,接下來就是數據變換。統計學家和科學家們通常會在這一步移除分析中的非必要數據。我們先看看數據(下圖)
對R語言程序員來說,上述操作等價於通過print(head(df))來列印數據的前6行,以及通過print(tail(df))來列印數據的後6行。當然Python中,默認列印是5行,而R則是6行。因此R的代碼head(df, n = 10),在Python中就是df.head(n = 10),列印數據尾部也是同樣道理
9
plt.show(sns.lmplot("Benguet", "Ifugao", df))
在Python中,我們使用def函數來實現一個自定義函數。例如,如果我們要定義一個兩數相加的函數,如下即可:
def add_2int(x, y):
return x + y
print add_2int(2, 2)
# OUTPUT
4
順便說一下,Python中的縮進是很重要的。通過縮進來定義函數作用域,就像在R語言中使用大括弧{…}一樣。這有一個我們之前博文的例子:
產生10個正態分布樣本,其中和
基於95%的置信度,計算和;
重復100次; 然後
計算出置信區間包含真實均值的百分比
Python中,程序如下:
import numpy as np
import scipy.stats as ss
def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
m = np.zeros((rep, 4))
for i in range(rep):
norm = np.random.normal(loc = mu, scale = sigma, size = n)
xbar = np.mean(norm)
low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
if (mu > low) & (mu < up):
rem = 1
else:
rem = 0
m[i, :] = [xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
上述代碼讀起來很簡單,但是循環的時候就很慢了。下面針對上述代碼進行了改進,這多虧了Python專家
import numpy as np
import scipy.stats as ss
def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))
xbar = norm.mean(1)
low = xbar - scaled_crit
up = xbar + scaled_crit
rem = (mu > low) & (mu < up)
m = np.c_[xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
數據變換
創建自定義函數
⑸ 誰有《利用Python進行數據分析》電子書百度網盤資源下載
《利用Python進行數據分析》網路網盤txt 最新全集下載;
鏈接:
《利用Python進行數據分析》是2013年10月機械工業出版社出版的軟硬體開發類圖書,作者是麥金尼。講述了從pandas庫的數據分析工具開始利用高性能工具、matpIotlib、pandas的groupby功能等處理各種各樣的時間序列數據。
⑹ 誰有有《利用Python進行數據分析》pdf 謝謝
利用python進行數據分析
鏈接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ
本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。
⑺ python數據分析與應用-Python數據分析與應用 PDF 內部全資料版
給大家帶來的一篇關於Python數據相關的電子書資源,介紹了關於Python方面的內容,本書是由人民郵電出版社出版,格式為PDF,資源大小281 MB,黃紅梅 張良均編寫,目前豆瓣、亞馬遜、當當、京東等電子書綜合評分為:7.8。
內容介紹
目錄
第1章Python數據分析概述1
任務1.1認識數據分析1
1.1.1掌握數據分析的概念2
1.1.2掌握數據分析的流程2
1.1.3了解數據分析應用場景4
任務1.2熟悉Python數據分析的工具5
1.2.1了解數據分析常用工具6
1.2.2了解Python數據分析的優勢7
1.2.3了解Python數據分析常用類庫7
任務1.3安裝Python的Anaconda發行版9
1.3.1了解Python的Anaconda發行版9
1.3.2在Windows系統中安裝Anaconda9
1.3.3在Linux系統中安裝Anaconda12
任務1.4掌握Jupyter Notebook常用功能14
1.4.1掌握Jupyter Notebook的基本功能14
1.4.2掌握Jupyter Notebook的高 級功能16
小結19
課後習題19
第2章NumPy數值計算基礎21
任務2.1掌握NumPy數組對象ndarray21
2.1.1創建數組對象21
2.1.2生成隨機數27
2.1.3通過索引訪問數組29
2.1.4變換數組的形態31
任務2.2掌握NumPy矩陣與通用函數34
2.2.1創建NumPy矩陣34
2.2.2掌握ufunc函數37
任務2.3利用NumPy進行統計分析41
2.3.1讀/寫文件41
2.3.2使用函數進行簡單的統計分析44
2.3.3任務實現48
小結50
實訓50
實訓1創建數組並進行運算50
實訓2創建一個國際象棋的棋盤50
課後習題51
第3章Matplotlib數據可視化基礎52
任務3.1掌握繪圖基礎語法與常用參數52
3.1.1掌握pyplot基礎語法53
3.1.2設置pyplot的動態rc參數56
任務3.2分析特徵間的關系59
3.2.1繪制散點圖59
3.2.2繪制折線圖62
3.2.3任務實現65
任務3.3分析特徵內部數據分布與分散狀況68
3.3.1繪制直方圖68
3.3.2繪制餅圖70
3.3.3繪制箱線圖71
3.3.4任務實現73
小結77
實訓78
實訓1分析1996 2015年人口數據特徵間的關系78
實訓2分析1996 2015年人口數據各個特徵的分布與分散狀況78
課後習題79
第4章pandas統計分析基礎80
任務4.1讀/寫不同數據源的數據80
4.1.1讀/寫資料庫數據80
4.1.2讀/寫文本文件83
4.1.3讀/寫Excel文件87
4.1.4任務實現88
任務4.2掌握DataFrame的常用操作89
4.2.1查看DataFrame的常用屬性89
4.2.2查改增刪DataFrame數據91
4.2.3描述分析DataFrame數據101
4.2.4任務實現104
任務4.3轉換與處理時間序列數據107
4.3.1轉換字元串時間為標准時間107
4.3.2提取時間序列數據信息109
4.3.3加減時間數據110
4.3.4任務實現111
任務4.4使用分組聚合進行組內計算113
4.4.1使用groupby方法拆分數據114
4.4.2使用agg方法聚合數據116
4.4.3使用apply方法聚合數據119
4.4.4使用transform方法聚合數據121
4.4.5任務實現121
任務4.5創建透視表與交叉表123
4.5.1使用pivot_table函數創建透視表123
4.5.2使用crosstab函數創建交叉表127
4.5.3任務實現128
小結130
實訓130
實訓1讀取並查看P2P網路貸款數據主表的基本信息130
實訓2提取用戶信息更新表和登錄信息表的時間信息130
實訓3使用分組聚合方法進一步分析用戶信息更新表和登錄信息表131
實訓4對用戶信息更新表和登錄信息表進行長寬表轉換131
課後習題131
第5章使用pandas進行數據預處理133
任務5.1合並數據133
5.1.1堆疊合並數據133
5.1.2主鍵合並數據136
5.1.3重疊合並數據139
5.1.4任務實現140
任務5.2清洗數據141
5.2.1檢測與處理重復值141
5.2.2檢測與處理缺失值146
5.2.3檢測與處理異常值149
5.2.4任務實現152
任務5.3標准化數據154
5.3.1離差標准化數據154
5.3.2標准差標准化數據155
5.3.3小數定標標准化數據156
5.3.4任務實現157
任務5.4轉換數據158
5.4.1啞變數處理類別型數據158
5.4.2離散化連續型數據160
5.4.3任務實現162
小結163
實訓164
實訓1插補用戶用電量數據缺失值164
實訓2合並線損、用電量趨勢與線路告警數據164
實訓3標准化建模專家樣本數據164
課後習題165
第6章使用scikit-learn構建模型167
任務6.1使用sklearn轉換器處理數據167
6.1.1載入datasets模塊中的數據集167
6.1.2將數據集劃分為訓練集和測試集170
6.1.3使用sklearn轉換器進行數據預處理與降維172
6.1.4任務實現174
任務6.2構建並評價聚類模型176
6.2.1使用sklearn估計器構建聚類模型176
6.2.2評價聚類模型179
6.2.3任務實現182
任務6.3構建並評價分類模型183
6.3.1使用sklearn估計器構建分類模型183
6.3.2評價分類模型186
6.3.3任務實現188
任務6.4構建並評價回歸模型190
6.4.1使用sklearn估計器構建線性回歸模型190
6.4.2評價回歸模型193
6.4.3任務實現194
小結196
實訓196
實訓1使用sklearn處理wine和wine_quality數據集196
實訓2構建基於wine數據集的K-Means聚類模型196
實訓3構建基於wine數據集的SVM分類模型197
實訓4構建基於wine_quality數據集的回歸模型197
課後習題198
第7章航空公司客戶價值分析199
任務7.1了解航空公司現狀與客戶價值分析199
7.1.1了解航空公司現狀200
7.1.2認識客戶價值分析201
7.1.3熟悉航空客戶價值分析的步驟與流程201
任務7.2預處理航空客戶數據202
7.2.1處理數據缺失值與異常值202
7.2.2構建航空客戶價值分析關鍵特徵202
7.2.3標准化LRFMC模型的5個特徵206
7.2.4任務實現207
任務7.3使用K-Means演算法進行客戶分群209
7.3.1了解K-Means聚類演算法209
7.3.2分析聚類結果210
7.3.3模型應用213
7.3.4任務實現214
小結215
實訓215
實訓1處理信用卡數據異常值215
實訓2構造信用卡客戶風險評價關鍵特徵217
實訓3構建K-Means聚類模型218
課後習題218
第8章財政收入預測分析220
任務8.1了解財政收入預測的背景與方法220
8.1.1分析財政收入預測背景220
8.1.2了解財政收入預測的方法222
8.1.3熟悉財政收入預測的步驟與流程223
任務8.2分析財政收入數據特徵的相關性223
8.2.1了解相關性分析223
8.2.2分析計算結果224
8.2.3任務實現225
任務8.3使用Lasso回歸選取財政收入預測的關鍵特徵225
8.3.1了解Lasso回歸方法226
8.3.2分析Lasso回歸結果227
8.3.3任務實現227
任務8.4使用灰色預測和SVR構建財政收入預測模型228
8.4.1了解灰色預測演算法228
8.4.2了解SVR演算法229
8.4.3分析預測結果232
8.4.4任務實現234
小結236
實訓236
實訓1求取企業所得稅各特徵間的相關系數236
實訓2選取企業所得稅預測關鍵特徵237
實訓3構建企業所得稅預測模型237
課後習題237
第9章家用熱水器用戶行為分析與事件識別239
任務9.1了解家用熱水器用戶行為分析的背景與步驟239
9.1.1分析家用熱水器行業現狀240
9.1.2了解熱水器採集數據基本情況240
9.1.3熟悉家用熱水器用戶行為分析的步驟與流程241
任務9.2預處理熱水器用戶用水數據242
9.2.1刪除冗餘特徵242
9.2.2劃分用水事件243
9.2.3確定單次用水事件時長閾值244
9.2.4任務實現246
任務9.3構建用水行為特徵並篩選用水事件247
9.3.1構建用水時長與頻率特徵248
9.3.2構建用水量與波動特徵249
9.3.3篩選候選洗浴事件250
9.3.4任務實現251
任務9.4構建行為事件分析的BP神經網路模型255
9.4.1了解BP神經網路演算法原理255
9.4.2構建模型259
9.4.3評估模型260
9.4.4任務實現260
小結263
實訓263
實訓1清洗運營商客戶數據263
實訓2篩選客戶運營商數據264
實訓3構建神經網路預測模型265
課後習題265
附錄A267
附錄B270
參考文獻295
學習筆記
Jupyter Notebook(此前被稱為 IPython notebook)是一個互動式筆記本,支持運行 40 多種編程語言。 Jupyter Notebook 的本質是一個 Web 應用程序,便於創建和共享文學化程序文檔,支持實時代碼,數學方程,可視化和 markdown。 用途包括:數據清理和轉換,數值模擬,統計建模,機器學習等等 。 定義 (推薦學習:Python視頻教程) 用戶可以通過電子郵件,Dropbox,GitHub 和 Jupyter Notebook Viewer,將 Jupyter Notebook 分享給其他人。 在Jupyter Notebook 中,代碼可以實時的生成圖像,視頻,LaTeX和JavaScript。 使用 數據挖掘領域中最熱門的比賽 Kaggle 里的資料都是Jupyter 格式 。 架構 Jupyter組件 Jupyter包含以下組件: Jupyter Notebook 和 ……
本文實例講述了Python實現的微信好友數據分析功能。分享給大家供大家參考,具體如下: 這里主要利用python對個人微信好友進行分析並把結果輸出到一個html文檔當中,主要用到的python包為 itchat , pandas , pyecharts 等 1、安裝itchat 微信的python sdk,用來獲取個人好友關系。獲取的代碼 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……
基於微信開放的個人號介面python庫itchat,實現對微信好友的獲取,並對省份、性別、微信簽名做數據分析。 效果: 直接上代碼,建三個空文本文件stopwords.txt,newdit.txt、unionWords.txt,下載字體simhei.ttf或刪除字體要求的代碼,就可以直接運行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#繪圖時可以顯示中文plt.rcParams['axes.unicode_minus']=False#繪圖時可以顯示中文import jiemport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解決編碼問題non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #獲取好友信息def getFriends():……
Python數據分析之雙色球基於線性回歸演算法預測下期中獎結果示例
本文實例講述了Python數據分析之雙色球基於線性回歸演算法預測下期中獎結果。分享給大家供大家參考,具體如下: 前面講述了關於雙色球的各種演算法,這里將進行下期雙色球號碼的預測,想想有些小激動啊。 代碼中使用了線性回歸演算法,這個場景使用這個演算法,預測效果一般,各位可以考慮使用其他演算法嘗試結果。 發現之前有很多代碼都是重復的工作,為了讓代碼看的更優雅,定義了函數,去調用,頓時高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#導入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#讀取文件d……
以上就是本次介紹的Python數據電子書的全部相關內容,希望我們整理的資源能夠幫助到大家,感謝大家對鬼鬼的支持。
注·獲取方式:私信(666)