當前位置:首頁 » 編程語言 » pythonfor循環效率

pythonfor循環效率

發布時間: 2024-03-05 23:53:51

1. python教程:For循環基本用法

Python中的for循環可以遍歷一個數組,下面我就給大家分享一下在Python中for循環都有哪些基本用法。

工具/材料

CMD命令行

  • 01

    首先我們要打開CMD命令行,在CMD中輸入python命令進入到python運行環境,如下圖所示

  • 02

    接下來我們准備一個數組,後面會用for循環輸出這個數組的內世核悔容,如下圖搜正所示

  • 03

    然後我們寫第一個for循環,注意這里用的是for和in的氏培搭配語法,如下圖所示

  • 04

    最後你還可以在for循環中通過索引來循環輸出數組內容,如下圖所示,使用索引的時候要注意len方法的使用

2. python 循環內要處理大量數據時怎麼優化

先嘗試優化程序的時間復雜度,尋找更有效的演算法

確保了演算法復雜度在可接受范圍之內後,開始進行常數優化,以下是Python優化的幾個小技巧:

  1. 實測表明,for語句一般比while語句效率更高

  2. 同樣實測表明,xrange一般比range要高效

  3. 如果要存儲動態數據(即有可能頻繁變動的數據)少用list和str,多用dict

  4. 實測表明,

    兩個str的連接效率從高到低+=,join,+

    多個str的連接效率從高到低join,+=,+

  5. 盡可能使用列表解析表達式和生成器表達式代替循環一遍來構建list

  6. 避免使用global關鍵字,無論是從代碼效率還是可移植性的方面考慮

3. python如何提高for循環效率

把數據放在一個list, 在全部計算完以後輸出這個list?
print本來就是很慢的, 拖慢速度的是print不是for

4. python為什麼沒有一個高效的for循環,還是我無知

本回答適用於python3.x
python本身速度確實相對比較慢。 但是相對來說,python有比直接的for循環快速的寫法。
比如標准for循環寫法如下
for i in range(10000):
i**2
這樣就比較慢,標准寫法的嵌套循環更慢。

可改寫為列表推斷式 : [ i**2 for i in range(10000)], 這樣就比直接for循環標准寫法要快不少;
此外, 還可以用python自帶的高級函數 map,自動並行計算。
寫為 list(map(lambda i: i**2, range(10000))) 也很快。 map函數和列表推斷式速度差不多。

5. 如何提高python的運行效率

竅門一:關鍵代碼使用外部功能包

Python簡化了許多編程任務,但是對於一些時間敏感的任務,它的表現經常不盡人意。使用C/C++或機器語言的外部功能包處理時間敏感任務,可以有效提高應用的運行效率。這些功能包往往依附於特定的平台,因此你要根據自己所用的平台選擇合適的功能包。簡而言之,這個竅門要你犧牲應用的可移植性以換取只有通過對底層主機的直接編程才能獲得的運行效率。以下是一些你可以選擇用來提升效率的功能包:

Cython
Pylnlne
PyPy
Pyrex

這些功能包的用處各有不同。比如說,使用C語言的數據類型,可以使涉及內存操作的任務更高效或者更直觀。Pyrex就能幫助Python延展出這樣的功能。Pylnline能使你在Python應用中直接使用C代碼。內聯代碼是獨立編譯的,但是它把所有編譯文件都保存在某處,並能充分利用C語言提供的高效率。

竅門二:在排序時使用鍵

Python含有許多古老的排序規則,這些規則在你創建定製的排序方法時會佔用很多時間,而這些排序方法運行時也會拖延程序實際的運行速度。最佳的排序方法其實是盡可能多地使用鍵和內置的sort()方法。譬如,拿下面的代碼來說:

import operator
somelist = [(1, 5,]
在每段例子里,list都是根據你選擇的用作關鍵參數的索引進行排序的。這個方法不僅對數值類型有效,還同樣適用於字元串類型。

竅門三:針對循環的優化

每一種編程語言都強調最優化的循環方案。當使用Python時,你可以藉助豐富的技巧讓循環程序跑得更快。然而,開發者們經常遺忘的一個技巧是:盡量避免在循環中訪問變數的屬性。譬如,拿下面的代碼來說:

lowerlist = ['this', 'is', 'lowercase']
upper = str.upper
upperlist = []
append = upperlist.append
for word in lowerlist:
append(upper(word))
print(upperlist)
#Output = ['THIS', 'IS', 'LOWERCASE']
每次你調用str.upper, Python都會計算這個式子的值。然而,如果你把這個求值賦值給一個變數,那麼求值的結果就能提前知道,Python程序就能運行得更快。因此,關鍵就是盡可能減小Python在循環中的工作量。因為Python解釋執行的特性,在上面的例子中會大大減慢它的速度。

(注意:優化循環的方法還有很多,這只是其中之一。比如,很多程序員會認為,列表推導式是提高循環速度的最佳方法。關鍵在於,優化循環方案是提高應用程序運行速度的上佳選擇。)

竅門四:使用較新的Python版本

如果你在網上搜索Python,你會發現數不盡的信息都是關於如何升級Python版本。通常,每個版本的Python都會包含優化內容,使其運行速度優於之前的版本。但是,限制因素在於,你最喜歡的函數庫有沒有同步更新支持新的Python版本。與其爭論函數庫是否應該更新,關鍵在於新的Python版本是否足夠高效來支持這一更新。

你要保證自己的代碼在新版本里還能運行。你需要使用新的函數庫才能體驗新的Python版本,然後你需要在做出關鍵性的改動時檢查自己的應用。只有當你完成必要的修正之後,你才能體會新版本的不同。

然而,如果你只是確保自己的應用在新版本中可以運行,你很可能會錯過新版本提供的新特性。一旦你決定更新,請分析你的應用在新版本下的表現,並檢查可能出問題的部分,然後優先針對這些部分應用新版本的特性。只有這樣,用戶才能在更新之初就覺察到應用性能的改觀。

竅門五:嘗試多種編碼方法

每次創建應用時都使用同一種編碼方法幾乎無一例外會導致應用的運行效率不盡人意。可以在程序分析時嘗試一些試驗性的辦法。譬如說,在處理字典中的數據項時,你既可以使用安全的方法,先確保數據項已經存在再進行更新,也可以直接對數據項進行更新,把不存在的數據項作為特例分開處理。請看下面第一段代碼:

n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
if char not in myDict:
myDict[char] = 0
myDict[char] += 1
print(myDict)
當一開始myDict為空時,這段代碼會跑得比較快。然而,通常情況下,myDict填滿了數據,至少填有大部分數據,這時換另一種方法會更有效率。

n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
try:
myDict[char] += 1
except KeyError:
myDict[char] = 1
print(myDict)
在兩種方法中輸出結果都是一樣的。區別在於輸出是如何獲得的。跳出常規的思維模式,創建新的編程技巧能使你的應用更有效率。

竅門六:交叉編譯你的應用

開發者有時會忘記計算機其實並不理解用來創建現代應用程序的編程語言。計算機理解的是機器語言。為了運行你的應用,你藉助一個應用將你所編的人類可讀的代碼轉換成機器可讀的代碼。有時,你用一種諸如Python這樣的語言編寫應用,再以C++這樣的語言運行你的應用,這在運行的角度來說,是可行的。關鍵在於,你想你的應用完成什麼事情,而你的主機系統能提供什麼樣的資源。

Nuitka是一款有趣的交叉編譯器,能將你的Python代碼轉化成C++代碼。這樣,你就可以在native模式下執行自己的應用,而無需依賴於解釋器程序。你會發現自己的應用運行效率有了較大的提高,但是這會因平台和任務的差異而有所不同。

(注意:Nuitka現在還處在測試階段,所以在實際應用中請多加註意。實際上,當下最好還是把它用於實驗。此外,關於交叉編譯是否為提高運行效率的最佳方法還存在討論的空間。開發者已經使用交叉編譯多年,用來提高應用的速度。記住,每一種解決辦法都有利有弊,在把它用於生產環境之前請仔細權衡。)

在使用交叉編譯器時,記得確保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。為了讓解決方案生效,你需要一個Python解釋器和一個C++編譯器。Nuitka支持許多C++編譯器,其中包括Microsoft Visual Studio,MinGW 和 Clang/LLVM。

交叉編譯可能造成一些嚴重問題。比如,在使用Nuitka時,你會發現即便是一個小程序也會消耗巨大的驅動空間。因為Nuitka藉助一系列的動態鏈接庫(DDLs)來執行Python的功能。因此,如果你用的是一個資源很有限的系統,這種方法或許不太可行。

6. python的for循環問題

這是個雙重循環 外層循環執行1次 內層循環執行一局 python是格式強制語言
如果去掉4行 那麼變成只有一個while的單層循環 直到iteration>=5 循環結束 所以iteration和count都是5 而如果加上第四行則遍歷hello world這個字元串 長度是12空格也算 所以count和iteration都是12 因為他們都在內層循環里 內層循環一局結束後才去遍歷外層循環的下一次循環 iteration=12 >=5 所以循環結束

熱點內容
除了安卓還有什麼可以下載的 發布:2024-11-29 04:05:44 瀏覽:381
coreldraw用戶臨時文件夾 發布:2024-11-29 04:05:44 瀏覽:740
如何設置ipad文件夾 發布:2024-11-29 03:59:16 瀏覽:141
如何給u盤文件夾加密 發布:2024-11-29 03:48:37 瀏覽:693
傳奇打元寶腳本 發布:2024-11-29 03:39:52 瀏覽:843
如何裝linux系統 發布:2024-11-29 03:38:17 瀏覽:183
咋清理緩存 發布:2024-11-29 03:18:38 瀏覽:13
linux伺服器的配置文件 發布:2024-11-29 03:18:31 瀏覽:616
安卓軟體誤刪軟體如何恢復 發布:2024-11-29 02:55:58 瀏覽:233
我的世界安卓手機如何改成官服 發布:2024-11-29 02:43:11 瀏覽:290