hive與sparksql
① Sparksql同步Hbase數據到Hive表
spark 2.3.0
hive 3.0.0
hbase 2.0.0
常規操作 hbase數據同步到hive是螞搭通過再hive端建立hbase的映射表。
但是由於集群組件問題,建立的棗物笑映射表不能進行
insert into A select * from hbase映射表
操作。報錯!
org.apache.hadoop.hbase.client.RetriesExhaustedException: Can't get the location for replica 0
at org.apache.hadoop.hbase.client..getRegionLocations(.java:332)
spark讀取hbase數據形成RDD,構建schma信息,形成DF
通過sparkSQL 將df數據寫入到指定的hive表格中。
hadoop本地環境版本一定要與依賴包版本保持一直,不然報如下錯誤
java.lang.IllegalArgumentException: Unrecognized Hadoop major version number: 3.1.1
hbase 1.X與2.X有很大差距,所以再看案例參考是一定要結合自己的hbase版本。
筆者程序編譯中遇到
Cannot Resolve symbol TableInputFormat HBase找不到TableInputFormat
因為:新版本2.1.X版本的HBASE又把maprece.TableInputFormat單獨抽取出來了
需要導入依賴
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-maprece</artifactId>
<version>${hbase.version}</version>
</dependency>
一定要把hbase相關凳含的包都cp 到spark的jars文件下面。然後重啟spark服務。
不然你會遇到此類錯誤
Class org.apache.hadoop.hive.hbase.HBaseSerDe not found
或者
java.lang.NoClassDefFoundError: org/apache/hadoop/hbase/HBaseConfiguration
這些都是缺少jar包的表現。
② hive和sparksql的區別
歷史上存在的原理,以前都是使用hive來構建數據倉庫,所以存在大量對hive所管理的數據查詢的需求。而hive、shark、sparlSQL都可以進行hive的數據查詢。shark是使用了hive的sql語法解析器和優化器,修改了執行器,使之物理執行過程是跑在spark上;而sparkSQL是使用了自身的語法解析器、優化器和執行器,同時sparkSQL還擴展了介面,不單單支持hive數據的查詢,可以進行多種數據源的數據查詢。
③ spark SQL和hive到底什麼關系
Hive是一種基於HDFS的數據倉庫,並且提供了基於SQL模型的,針對存儲了大數據的數據倉庫,進行分布式交互查詢的查詢引擎。
SparkSQL並不能完全替代Hive,它替代的是Hive的查詢引擎,SparkSQL由於其底層基於Spark自身的基於內存的特點,因此速度是Hive查詢引擎的數倍以上,Spark本身是不提供存儲的,所以不可能替代Hive作為數據倉庫的這個功能。
SparkSQL相較於Hive的另外一個優點,是支持大量不同的數據源,包括hive、json、parquet、jdbc等等。SparkSQL由於身處Spark技術堆棧內,基於RDD來工作,因此可以與Spark的其他組件無縫整合使用,配合起來實現許多復雜的功能。比如SparkSQL支持可以直接針對hdfs文件執行sql語句。
④ Spark SQL(十):Hive On Spark
Hive是目前大數據領域,事實上的SQL標准。其底層默認是基於MapRece實現的,但是由於MapRece速度實在比較慢,因此這幾年,陸續出來了新的SQL查詢引擎,包括Spark SQL,Hive On Tez,Hive On Spark等。
Spark SQL與Hive On Spark是不一樣的。Spark SQL是Spark自己研發出來的針對各種數據源,包括Hive、JSON、Parquet、JDBC、RDD等都可以執行查詢的,一套基於Spark計算引擎的查詢引擎。因此它是Spark的一個項目,只不過提供了針對Hive執行查詢的工功能而已,適合在一些使用Spark技術棧的大數據應用類系統中使用。
而Hive On Spark,是Hive的一個項目,它是將Spark作為底層的查詢引擎(不通過MapRece作為唯一的查詢引擎)。Hive On Spark,只適用於Hive,在可預見的未來,很有可能Hive默認的底層引擎就從MapRece切換為Spark了;適合於將原有的Hive數據倉庫以及數據統計分析替換為Spark引擎,作為全公司通用的大數據統計分析引擎。
Hive On Spark做了一些優化:
1、Map Join
Spark SQL默認對join是支持使用broadcast機制將小表廣播到各個節點上,以進行join的。但是問題是,這會給Driver和Worker帶來很大的內存開銷。因為廣播的數據要一直保留在Driver內存中。所以目前採取的是,類似乎MapRece的Distributed Cache機制,即提高HDFS replica factor的復制因子,以讓數據在每個計算節點上都有一個備份,從而可以在本地進行數據讀取。
2、Cache Table
對於某些需要對一張表執行多次操作的場景,Hive On Spark內部做了優化,即將要多次操作的表cache到內存中,以便於提升性能。但是這里要注意,並不是對所有的情況都會自動進行cache。所以說,Hive On Spark還有很多不完善的地方。
Hive QL語句 =>
語法分析 => AST =>
生成邏輯執行計劃 => Operator Tree =>
優化邏輯執行計劃 => Optimized Operator Tree =>
生成物理執行計劃 => Task Tree =>
優化物理執行計劃 => Optimized Task Tree =>
執行優化後的Optimized Task Tree
⑤ sparkSQL用jdbc連接hive和用元數據連接hive的區別,各自優缺點
spark on hive : 是spark 通過spark-sql 使用hive 語句操作hive ,底層運行的還是 spark rdd.
*(1)就是通過sparksql,載入hive的配置文件,獲取到hive的元數據信息
* (2)spark sql獲取到hive的元數據信息之後就可以拿到hive的所有表的數據
* (3)接下來就可以通過spark sql來操作hive表中的數據
hive on spark: 是hive 等的執行引擎變成spark , 不再是maprece. 相對於上一項,這個要實現責麻煩很多, 必須重新編譯你的spark. 和導入jar包,
⑥ spark從hive數據倉庫中讀取的數據可以使用sparksql進行查詢嗎
1、為了讓Spark能夠連接到Hive的原有數據倉庫,我們需要將Hive中的hive-site.xml文件拷貝到Spark的conf目錄下,這樣就可以通過這個配置文件找到Hive的元數據以及數據存放。
在這里由於我的Spark是自動安裝和部署的,因此需要知道CDH將hive-site.xml放在哪裡。經過摸索。該文件默認所在的路徑是:/etc/hive/conf 下。
同理,spark的conf也是在/etc/spark/conf。
此時,如上所述,將對應的hive-site.xml拷貝到spark/conf目錄下即可
如果Hive的元數據存放在Mysql中,我們還需要准備好Mysql相關驅動,比如:mysql-connector-java-5.1.22-bin.jar。
2、編寫測試代碼
val conf=new SparkConf().setAppName("Spark-Hive").setMaster("local")
val sc=new SparkContext(conf)
//create hivecontext
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
sqlContext.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' ") //這里需要注意數據的間隔符
sqlContext.sql("LOAD DATA INPATH '/user/liujiyu/spark/kv1.txt' INTO TABLE src ");
sqlContext.sql(" SELECT * FROM jn1").collect().foreach(println)
sc.stop()
3、下面列舉一下出現的問題:
(1)如果沒有將hive-site.xml拷貝到spark/conf目錄下,會出現:
分析:從錯誤提示上面就知道,spark無法知道hive的元數據的位置,所以就無法實例化對應的client。
解決的辦法就是必須將hive-site.xml拷貝到spark/conf目錄下
(2)測試代碼中沒有加sc.stop會出現如下錯誤:
ERROR scheler.LiveListenerBus: Listener EventLoggingListener threw an exception
java.lang.reflect.InvocationTargetException
在代碼最後一行添加sc.stop()解決了該問題。