python回歸源碼
① 如何用python進行線性回歸以及誤差分析
數據挖掘中的預測問題通常分為2類:回歸與分類。
簡單的說回歸就是預測數值,而分類是給數據打上標簽歸類。
本文講述如何用Python進行基本的數據擬合,以及如何對擬合結果的誤差進行分析。
本例中使用一個2次函數加上隨機的擾動來生成500個點,然後嘗試用1、2、100次方的多項式對該數據進行擬合。
擬合的目的是使得根據訓練數據能夠擬合出一個多項式函數,這個函數能夠很好的擬合現有數據,並且能對未知的數據進行預測。
代碼如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 數據生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方誤差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 與均值相比的優秀程度,介於[0~1]。0表示不如均值。1表示完美預測.這個版本的實現是參考scikit-learn官網文檔 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 這是Conway&White《機器學習使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
該程序運行的顯示結果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90
② 求python多元支持向量機多元回歸模型最後預測結果導出代碼、測試集與真實值R2以及對比圖代碼
這是一個多元支持向量機回歸的模型,以下是一個參考的實現代碼:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmfrom sklearn.metrics import r2_score
# 模擬數據
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
# 分割數據
train_X = X[:60]
train_y = y[:60]
test_X = X[60:]
test_y = y[60:]
# 模型訓練
model = svm.SVR(kernel='rbf', C=1e3, gamma=0.1)
model.fit(train_X, train_y)
# 預測結果
pred_y = model.predict(test_X)# 計算R2r2 = r2_score(test_y, pred_y)
# 對比圖
plt.scatter(test_X, test_y, color='darkorange', label='data'指敏)
plt.plot(test_X, pred_y, color='navy', lw=2, label='SVR model')
plt.title('R2={:.2f}'.format(r2))
plt.legend()
plt.show()
上面的代碼將數據分為訓練數據和測試數據,使用SVR模型對訓練唯配枝數據進行訓練,然後對測試數據進行預測。計算預測結果與真實值的R2,最後賣逗將結果畫出對比圖,以評估模型的效果。
③ python多元線性回歸怎麼計算
1、什麼是多元線性回歸模型?
當y值的影響因素不唯一時,採用多元線性回歸模型。
y =y=β0+β1x1+β2x2+...+βnxn
例如商品的銷售額可能不電視廣告投入,收音機廣告投入,報紙廣告投入有關系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.
2、使用pandas來讀取數據
pandas 是一個用於數據探索、數據分析和數據處理的python庫
[python]view plain
importpandasaspd
<prename="code"class="python">#
data=pd.read_csv('/home/lulei/Advertising.csv')
#displaythefirst5rows
data.head()
- 這里的Advertising.csv是來自Advertising.csv。大家可以自己下載。
- TV Radio Newspaper Sales
- 0 230.1 37.8 69.2 22.1
- 1 44.5 39.3 45.1 10.4
- 2 17.2 45.9 69.3 9.3
- 3 151.5 41.3 58.5 18.5
- 4 180.8 10.8 58.4 12.9
Series類似於一維數組,它有一組數據以及一組與之相關的數據標簽(即索引)組成。
DataFrame是一個表格型的數據結構,它含有一組有序的列,每列可以是不同的值類型。DataFrame既有行索引也有列索引,它可以被看做由Series組成的字典。
#displaythelast5rows
data.tail()
- 只顯示結果的末尾5行
- TV Radio Newspaper Sales
- 195 38.2 3.7 13.8 7.6
- 196 94.2 4.9 8.1 9.7
- 197 177.0 9.3 6.4 12.8
- 198 283.6 42.0 66.2 25.5
- 199 232.1 8.6 8.7 13.4
#checktheshapeoftheDataFrame(rows,colums)
data.shape
- 查看DataFrame的形狀,注意第一列的叫索引,和資料庫某個表中的第一列類似。
TV:對於一個給定市場中單一產品,用於電視上的廣告費用(以千為單位)
Radio:在廣播媒體上投資的廣告費用
Newspaper:用於報紙媒體的廣告費用
Sales:對應產品的銷量
importseabornassns
importmatplotlib.pyplotasplt
#ots
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8)
plt.show()#注意必須加上這一句,否則無法顯示。
這里選擇TV、Radio、Newspaper作為特徵,Sales作為觀測值
返回的結果:
- seaborn的pairplot函數繪制X的每一維度和對應Y的散點圖。通過設置size和aspect參數來調節顯示的大小和比例。可以從圖中看出,TV特徵和銷量是有比較強的線性關系的,而Radio和Sales線性關系弱一些,Newspaper和Sales線性關系更弱。通過加入一個參數kind='reg',seaborn可以添加一條最佳擬合直線和95%的置信帶。
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8,kind='reg')
plt.show()
- 結果顯示如下:
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
#X=data[['TV','Radio','Newspaper']]#只需修改這里即可<prename="code"class="python"style="font-size:15px;line-height:35px;">X=data[['TV','Radio']]#去掉newspaper其他的代碼不變
- # print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape
- 2.81843904823
- [ 0.04588771 0.18721008]
- RMSE by hand: 1.28208957507
- 然後再次使用ROC曲線來觀測曲線的整體情況。我們在將Newspaper這個特徵移除之後,得到RMSE變小了,說明Newspaper特徵可能不適合作為預測銷量的特徵,於是,我們得到了新的模型。我們還可以通過不同的特徵組合得到新的模型,看看最終的誤差是如何的。
- 之前我提到了這種錯誤:
- ImportError Traceback (most recent call last)<ipython-input-182-3eee51fcba5a> in <mole>() 1 ###構造訓練集和測試集----> 2 from sklearn.cross_validation import train_test_split 3 #import sklearn.cross_validation 4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1) 5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split
- 這里我給出我自己寫的函數:
importrandom
<spanstyle="font-family:microsoftyahei;">######自己寫一個隨機分配數的函數,分成兩份,並將數值一次存儲在對應的list中##########
deftrain_test_split(ylabel,random_state=1):
importrandom
index=random.sample(range(len(ylabel)),50*random_state)
list_train=[]
list_test=[]
i=0
forsinrange(len(ylabel)):
ifiinindex:
list_test.append(i)
else:
list_train.append(i)
i+=1
returnlist_train,list_test
###############對特徵進行分割#############################
feature_cols=['TV','Radio','Newspaper']
X1=data[feature_cols]
[html]view plain
上面代碼的運行結果:
上面顯示的結果類似一個電子表格,這個結構稱為Pandas的數據幀(data frame),類型全稱:pandas.core.frame.DataFrame.
pandas的兩個主要數據結構:Series和DataFrame:
[python]view plain
[html]view plain
(200,4)
3、分析數據
特徵:
響應:
在這個案例中,我們通過不同的廣告投入,預測產品銷量。因為響應變數是一個連續的值,所以這個問題是一個回歸問題。數據集一共有200個觀測值,每一組觀測對應一個市場的情況。
注意:這里推薦使用的是seaborn包。網上說這個包的數據可視化效果比較好看。其實seaborn也應該屬於matplotlib的內部包。只是需要再次的單獨安裝。
[python]view plain
[html]view plain
[html]view plain
[python]view plain
直到這里整個的一次多元線性回歸的預測就結束了。
6、改進特徵的選擇
在之前展示的數據中,我們看到Newspaper和銷量之間的線性關系竟是負關系(不用驚訝,這是隨機特徵抽樣的結果。換一批抽樣的數據就可能為正了),現在我們移除這個特徵,看看線性回歸預測的結果的RMSE如何?
依然使用我上面的代碼,但只需修改下面代碼中的一句即可:
[python]view plain
最後的到的系數與測度如下:
LinearRegression(_X=True, fit_intercept=True, normalize=False)
備註:
註:上面的結果是由train_test_spilit()得到的,但是我不知道為什麼我的版本的sklearn包中居然報錯:
處理方法:1、我後來重新安裝sklearn包。再一次調用時就沒有錯誤了。
2、自己寫函數來認為的隨機構造訓練集和測試集。(這個代碼我會在最後附上。)
[python]view plain
[python]view plain
④ 求python支持向量機多元回歸預測代碼
這是一段用 Python 來實現 SVM 多元回歸預測的代碼示例:
# 導入相關核胡庫
from sklearn import datasets
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 載入數據集
X, y = datasets.load_boston(return_X_y=True)
# 將數據集拆分為訓練集和測試改塌攔集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 創建SVM多元回歸模型
reg = SVR(C=1.0, epsilon=0.2)
# 訓練模型
reg.fit(X_train, y_train)
# 預測結果
y_pred = reg.predict(X_test)
# 計算均方誤差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
在這段代碼中,首先導入了相關的庫,包括 SVR 函數衫仔、train_test_split 函數和 mean_squared_error 函數。然後,使用 load_boston 函數載入數據集,並將數據集分為訓練集和測試集。接著,使用 SVR 函數創建了一個 SVM 多元回歸模型,並使用 fit 函數對模型進行訓練。最後,使用 predict 函數進行預測,並使用 mean_squared_error 函數計算均方誤差。
需要注意的是,這僅僅是一個示例代碼,在實際應用中,可能需要根據項目的需求進行更改,例如使用不同的超參數
⑤ python做邏輯回歸 怎麼把導入的數據分成x,y
簡介
本例子是通過對一組邏輯回歸映射進行輸出,使得網路的權重和偏置達到最理想狀態,最後再進行預測。其中,使用GD演算法對參數進行更新,損耗函數採取交叉商來表示,一共訓練10000次。
2.python代碼
#!/usr/bin/python
import numpy
import theano
import theano.tensor as T
rng=numpy.random
N=400
feats=784
# D[0]:generate rand numbers of size N,element between (0,1)
# D[1]:generate rand int number of size N,0 or 1
D=(rng.randn(N,feats),rng.randint(size=N,low=0,high=2))
training_steps=10000
# declare symbolic variables
x=T.matrix('x')
y=T.vector('y')
w=theano.shared(rng.randn(feats),name='w') # w is shared for every input
b=theano.shared(0.,name='b') # b is shared too.
print('Initial model:')
print(w.get_value())
print(b.get_value())
# construct theano expressions,symbolic
p_1=1/(1+T.exp(-T.dot(x,w)-b)) # sigmoid function,probability of target being 1
prediction=p_1>0.5
xent=-y*T.log(p_1)-(1-y)*T.log(1-p_1) # cross entropy
cost=xent.mean()+0.01*(w**2).sum() # cost function to update parameters
gw,gb=T.grad(cost,[w,b]) # stochastic gradient descending algorithm
#compile
train=theano.function(inputs=[x,y],outputs=[prediction,xent],updates=((w,w-0.1*gw),(b,b-0.1*gb)))
predict=theano.function(inputs=[x],outputs=prediction)
# train
for i in range(training_steps):
pred,err=train(D[0],D[1])
print('Final model:')
print(w.get_value())
print(b.get_value())
print('target values for D:')
print(D[1])
print('prediction on D:')
print(predict(D[0]))
print('newly generated data for test:')
test_input=rng.randn(30,feats)
print('result:')
print(predict(test_input))
3.程序解讀
如上面所示,首先導入所需的庫,theano是一個用於科學計算的庫。然後這里我們隨機產生一個輸入矩陣,大小為400*784的隨機數,隨機產生一個輸出向量大小為400,輸出向量為二值的。因此,稱為邏輯回歸。
然後初始化權重和偏置,它們均為共享變數(shared),其中權重初始化為較小的數,偏置初始化為0,並且列印它們。
這里我們只構建一層網路結構,使用的激活函數為logistic sigmoid function,對輸入量乘以權重並考慮偏置以後就可以算出輸入的激活值,該值在(0,1)之間,以0.5為界限進行二值化,然後算出交叉商和損耗函數,其中交叉商是代表了我們的激活值與實際理論值的偏離程度。接著我們使用cost分別對w,b進行求解偏導,以上均為符號表達式運算。
接著我們使用theano.function進行編譯優化,提高計算效率。得到train函數和predict函數,分別進行訓練和預測。
接著,我們對數據進行10000次的訓練,每次訓練都會按照GD演算法進行更新參數,最後我們得到了想要的模型,產生一組新的輸入,即可進行預測。
⑥ 如何用python實現含有虛擬自變數的回歸
參考資料:
DataRobot | Ordinary Least Squares in Python
DataRoboe | Multiple Regression using Statsmodels
AnalyticsVidhya | 7 Types of Regression Techniques you should know!
⑦ Python源碼是什麼意思
源代碼是指原始代碼,可以是任何語言代碼。Python源碼就是指編寫的最原始程序的代碼。運行的軟體是要經過編寫的,程序員編寫程序的過程中需要他們的「語言」。