當前位置:首頁 » 編程語言 » python數據挖掘實戰

python數據挖掘實戰

發布時間: 2023-11-06 01:55:22

❶ 有哪些關於python數據分析方面比較好的書

基於我豐厚的收藏,我來回答這個問題再合適不過了。

我們把殲睜Python數據分析拆解為兩點:

第一,我們要學會Python的基本使用;第二,我們要學會Python的數據分敏碼析庫(假設你已經有了數據分析的基本理解,只是不清楚如何用Python完成數據分析工作)。

因此,我們針對兩個目的,分別列出一些書目。

Python的使用

《Python編程:從入門到實踐》:拋棄那些大部頭吧,我們不是Python後端工程師,不是Python前段工程師,也不是Python全棧開發者,我們暫時不需要掌握那麼多亂七八糟的功能。對於新手來說,二八法則永遠適用,我們只需要掌握百分之二十的功能,就足以應對絕大多數的工作了。《Python編程快速上手-讓繁瑣工作自動化》:同上,兩部都是比較好的入門書,可以幫助我們簡單、快速地上手。《Python3Cookbook》:這本書可以幫助你更加深入地探索Python3,里邊有各種各樣翔實的案例,假如你的目的只是學會使用Python做數據分析,這本書完全可以保證你在Python3的使用上沒有短板。

關於數據分析

《利用Python進行數據分析》第二版:這本書是Python數據分析領域聖經一般的書籍,作者是強大的數據分析庫Pandas的作者,他在書中講解了numpy、pandas、matplotlib等庫,作為入門書再好不過了。更重要的是,這本書由淺入深,可以開啟我們使用Python進行數據分析的大門。《Python數據分析》第二版:非同步社區有中文第二版,里邊更加深入地探討了如何使用Python進行數據分析工作,包括了對統計學、線性代數、可視化、時間序列、資料庫、自然語言處理、機器學習等方面的內容,這本書可以幫助我們更進一步

關於數據挖掘

《數據科學入門》:從零開始踏入數據科學的大門,搭建屬於自己的數據分析、數據挖掘工具。它能幫助我們更加深入地理解數據分析和數據挖掘的過程。《Python數據科學手冊》:強烈推薦,這部分由淺入深,詳細講氏拿歲解了數據分析、數據挖掘、機器學習的流程。《機器學習實戰》:經典書,但是使用的是Python2,年頭也比較久了,也是從零搭建機器學習的模型,對於我們深入理解機器學習的過程有很好的幫助。

關於數據可視化

《Python數據可視化編程實戰》第二版:很詳細的書。《Python數據可視化之matplotlib實踐》:極好的matplotlib入門書,非常適合新手學習。

由於Python如日中天,因此Python數據分析相關的書籍非常多,我們能認真讀完幾本,基本上都可以掌握大多數的數據科學流程。下邊是我收藏的一些書,感興趣的可以自己搜索一下,網上有正版出售,比如圖靈社區、非同步社區、華章數媒、博文視點等均有優質IT書籍出售,包括紙質版和電子版。

❷ 如何用Python進行大數據挖掘和分析

如何用Python進行大數據挖掘和分析?快速入門路徑圖
大數據無處不在。在時下這個年代,不管你喜歡與否,在運營一個成功的商業的過程中都有可能會遇到它。
什麼是 大數據 ?
大數據就像它看起來那樣——有大量的數據。單獨而言,你能從單一的數據獲取的洞見窮其有限。但是結合復雜數學模型以及強大計算能力的TB級數據,卻能創造出人類無法製造的洞見。大數據分析提供給商業的價值是無形的,並且每天都在超越人類的能力。
大數據分析的第一步就是要收集數據本身,也就是眾所周知的「數據挖掘」。大部分的企業處理著GB級的數據,這些數據有用戶數據、產品數據和地理位置數據。今天,我將會帶著大家一起探索如何用 Python 進行大數據挖掘和分析?
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼等。還有,Python是開源的,並且有很多用於數據科學的類庫。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
數據分析流程
一般可以按「數據獲取-數據存儲與提取-數據預處理-數據建模與分析-數據可視化」這樣的步驟來實施一個數據分析項目。按照這個流程,每個部分需要掌握的細分知識點如下:
數據獲取:公開數據、Python爬蟲
外部數據的獲取方式主要有以下兩種。
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urllib、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:sql語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
總結
其實做數據挖掘不是夢,5步就能讓你成為一個Python爬蟲高手!

❸ 如何自學成為數據分析師

數據分析師的基本工作流程:

1.定義問題

確定需要的問題,以及想得出的結論。需要考慮的選項有很多,要根據所在業務去判斷。常見的有:變化趨勢、用戶畫像、影響因素、歷史數據等。

2.數據獲取

數據獲取的方式有很多種:

一是直接從企業資料庫調取,需要SQL技能去完成數據提取等的資料庫管理工作。

二是獲取公開數據,政府、企業、統計局等機構有。

三是通過Python編寫網頁爬蟲。

3.數據預處理

對殘缺、重復等異常數據進行清洗。

4.數據分析與建模

這個部分需要了解基本的統計分析方法、數據挖掘演算法,了解不同統計方法適用的場景和適合的問題。

5.數據可視化和分析報告撰寫

學習一款可視化工具,將數據通過可視化最直觀的展現出來。

數據分析入門需要掌握的技能有:

1. SQL(資料庫):

怎麼從資料庫取數據?怎麼取到自己想要的特定的數據?等這些問題就是你首要考慮的問題,而這些問題都是通過SQL解決的,所以SQL是數據分析的最基礎的技能。

2. excel

分析師更多的時候是在分析數據,分析數據時需要把數據放到一個文件里,就是excel。

熟練excel常用公式,學會做數據透視表,什麼數據畫什麼圖等。

3.Python或者R的基礎:

必備項,也是加分項,在數據挖掘方向是必備項,語言相比較工具更加靈活也更加實用。

4.學習一個可視化工具

如果你想往更高層次發展,上面的東西頂多隻佔20%,剩下的80%則是業務理解能力,目標拆解能力,根據數據需求更多新技能的學習能力。

❹ 《Python數據挖掘入門與實踐》pdf下載在線閱讀,求百度網盤雲資源

《Python數據挖掘入門與實踐》([澳] Robert Layton)電子書網盤下載免費在線閱讀

鏈接:https://pan..com/s/12d3rQe0uNTG98m09c12INA

提取碼:tqlt

書名:Python數據挖掘入門與實踐

作者:[澳] Robert Layton

譯者:杜春曉

豆瓣評分:7.9

出版社:人民郵電出版社

出版年份:2016-7

頁數:252

內容簡介:

本書作為數據挖掘入門讀物,介紹了數據挖掘的基礎知識、基本工具和實踐方法,通過循序漸進地講解演算法,帶你輕松踏上數據挖掘之旅。本書採用理論與實踐相結合的方式,呈現了如何使用決策樹和隨機森林演算法預測美國職業籃球聯賽比賽結果,如何使用親和性分析方法推薦電影,如何使用樸素貝葉斯演算法進行社會媒體挖掘,等等。本書也涉及神經網路、深度學習、大數據處理等內容。

作者簡介:

Robert Layton

計算機科學博士,網路犯罪問題和文本分析方面的專家。多年來一直熱衷於Python編程,參與過scikit-learn庫等很多開源庫的開發,曾擔任2014年度「谷歌編程之夏」項目導師。他曾與全球幾大數據挖掘公司密切合作,挖掘真實數據並研發相關應用。他的公司dataPipeline為多個行業提供數據挖掘和數據分析解決方案。

譯者簡介:

杜春曉

英語語言文學學士,軟體工程碩士。其他譯著有《電子達人——我的第一本Raspberry Pi入門手冊》《Python數據分析》。新浪微博:@宜_生。

❺ 《Python數據分析與挖掘實戰》epub下載在線閱讀,求百度網盤雲資源

《Python數據分析與挖掘實戰》(張良均)電子書網盤下載免費在線閱讀

資源鏈接:

鏈接:https://pan..com/s/1XW_EYuaExQAoUZHdXvz6zw

提取碼:vcfu

書名:Python數據分析與挖掘實戰

作者:張良均

豆瓣評分:7.6

出版社:機械工業出版社

出版年份:2016-1

頁數:335

內容簡介:10餘位數據挖掘領域資深專家和科研人員,10餘年大數據挖掘咨詢與實施經驗結晶。從數據挖掘的應用出發,以電力、航空、醫療、互聯網、生產製造以及公共服務等行業真實案例為主線,深入淺出介紹Python數據挖掘建模過程,實踐性極強。

本書共15章,分兩個部分:基礎篇、實戰篇。基礎篇介紹了數據挖掘的基本原理,實戰篇介紹了一個個真實案例,通過對案例深入淺出的剖析,使讀者在不知不覺中通過案例實踐獲得數據挖掘項目經驗,同時快速領悟看似難懂的數據挖掘理論。讀者在閱讀過程中,應充分利用隨書配套的案例建模數據,藉助相關的數據挖掘建模工具,通過上機實驗,以快速理解相關知識與理論。

基礎篇(第1~5章),第1章的主要內容是數據挖掘概述;第2章對本書所用到的數據挖掘建模工具Python語言進行了簡明扼要的說明;第3章、第4章、第5章對數據挖掘的建模過程,包括數據探索、數據預處理及挖掘建模的常用演算法與原理進行了介紹。

實戰篇(第6~15章),重點對數據挖掘技術在電力、航空、醫療、互聯網、生產製造以及公共服務等行業的應用進行了分析。在案例結構組織上,本書是按照先介紹案例背景與挖掘目標,再闡述分析方法與過程,最後完成模型構建的順序進行的,在建模過程的關鍵環節,穿插程序實現代碼。最後通過上機實踐,加深讀者對數據挖掘技術在案例應用中的理解。

作者簡介:張良均 ,資深大數據挖掘專家和模式識別專家,高級信息項目管理師,有10多年的大數據挖掘應用、咨詢和培訓經驗。為電信、電力、政府、互聯網、生產製造、零售、銀行、生物、化工、醫葯等多個行業上百家大型企業提供過數據挖掘應用與咨詢服務,實踐經驗非常豐富。此外,他精通Java EE企業級應用開發,是廣東工業大學、華南師范大學、華南農業大學、貴州師范學院、韓山師范學院、廣東技術師范學院兼職教授,著有《神經網路實用教程》、《數據挖掘:實用案例分析》、《MATLAB數據分析與挖掘實戰》《R語言數據分析與挖掘實戰》等暢銷書。

❻ 數據挖掘方向,Python中還需要學習哪些內容

就題論題,還包括:
1. Python 資料庫連接庫,例如MySQL 連接庫的應用,這決定你的數據從哪裡來。這裡面涉及到sql語法和資料庫基本知識,是你在學習的時候必須一起學會的。
2. Python 做基本數據計算和預處理的庫,包括numpy ,scipy,pandas 這三個用得最多。
3. 數據分析和挖掘庫,主要是sklearn,Statsmodels。前者是最廣泛的機器學習庫,後者是側重於統計分析的庫。(要知道統計分析大多時候和數據挖掘都錯不能分開使用)
4. 圖形展示庫。matpotlib,這是用的最多的了。
說完題主本身 要求,樓上幾位說的對,你還需要一些關於數據挖掘演算法的基本知識和認知,否則即使你調用相關庫得到結果,很可能你都不知道怎麼解讀,如何優化,甚至在什麼場景下還如何選擇演算法等。因此基本知識你得了解。主要包括:
1.統計學相關,看看深入淺出數據分析和漫畫統計學吧,雖然是入門的書籍,但很容易懂。
2.數據挖掘相關,看看數據挖掘導論吧,這是講演算法本身得書。
剩下的就是去實踐了。有項目就多參與下項目,看看真正的數據挖掘項目是怎麼開展的,流程怎樣等。沒有項目可以去參加一些數據挖掘或機器學習方面的大賽,也是增加經驗得好方法。

熱點內容
創建資料庫並設置編碼 發布:2025-01-31 11:11:52 瀏覽:781
搭建數據中心需要的伺服器配置 發布:2025-01-31 11:11:44 瀏覽:590
c語言小數點後四捨五入 發布:2025-01-31 11:10:10 瀏覽:496
httpslinux 發布:2025-01-31 11:10:09 瀏覽:828
java4 發布:2025-01-31 11:08:42 瀏覽:355
什麼是密碼屏蔽 發布:2025-01-31 11:05:13 瀏覽:216
一個演算法的效率可分為 發布:2025-01-31 11:05:12 瀏覽:639
win7用戶名密碼是什麼 發布:2025-01-31 10:57:38 瀏覽:394
網址埠訪問 發布:2025-01-31 10:49:30 瀏覽:512
javaweb代碼 發布:2025-01-31 10:37:54 瀏覽:259