python計算機視覺編程
Ⅰ python一般可以用來干什麼呢
現在互聯網發展迅速,眾多行業巨頭,都已經轉投到人工智慧領域,而人工智慧的首選編程語言就是python,所以學好Python能夠從事的工作還是很多的,而且前景非常不錯。
學完python可以應用於以下領域:
①Web 和 Internet開發
②科學計算和統計
③人工智慧
④桌面界面開發
⑤軟體開發
⑥後端開發
⑦網路爬蟲
可以從事的崗位也很多,比如Python爬蟲工程師,大數據工程師等等!
互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。
想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。
祝你學有所成,望採納。
Ⅱ python是什麼樣的編程語言
Python由荷蘭數學和計算機科學研究學會的Guido van Rossum於1990 年代初設計,作為一門叫做ABC語言的替代品。 Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言, 隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。
Python解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。 Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。例如卡耐基梅隆大學的編程基礎、麻省理工學院的計算機科學及編程導論就使用Python語言講授。眾多開源的科學計算軟體包都提供了Python的調用介面,例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。而Python專用的科學計算擴展庫就更多了,例如如下3個十分經典的科學計算擴展庫:NumPy、SciPy和matplotlib,它們分別為Python提供了快速數組處理、數值運算以及繪圖功能。因此Python語言及其眾多的擴展庫所構成的開發環境十分適合工程技術、科研人員處理實驗數據、製作圖表,甚至開發科學計算應用程序。2018年3月,該語言作者在郵件列表上宣布Python 2.7將於2020年1月1日終止支持。用戶如果想要在這個日期之後繼續得到與Python 2.7有關的支持,則需要付費給商業供應商。
Ⅲ 10 個 Python 圖像編輯工具
以下提到的這些 Python 工具在編輯圖像、操作圖像底層數據方面都提供了簡單直接的方法。
-- Parul Pandey
當今的世界充滿了數據,而圖像數據就是其中很重要的一部分。但只有經過處理和分析,提高圖像的質量,從中提取出有效地信息,才能利用到這些圖像數據。
常見的圖像處理操作包括顯示圖像,基本的圖像操作,如裁剪、翻轉、旋轉;圖像的分割、分類、特徵提取;圖像恢復;以及圖像識別等等。Python 作為一種日益風靡的科學編程語言,是這些圖像處理操作的最佳選擇。同時,在 Python 生態當中也有很多可以免費使用的優秀的圖像處理工具。
下文將介紹 10 個可以用於圖像處理任務的 Python 庫,它們在編輯圖像、查看圖像底層數據方面都提供了簡單直接的方法。
scikit-image 是一個結合 NumPy 數組使用的開源 Python 工具,它實現了可用於研究、教育、工業應用的演算法和應用程序。即使是對於剛剛接觸 Python 生態圈的新手來說,它也是一個在使用上足夠簡單的庫。同時它的代碼質量也很高,因為它是由一個活躍的志願者社區開發的,並且通過了 同行評審(peer review)。
scikit-image 的 文檔 非常完善,其中包含了豐富的用例。
可以通過導入 skimage 使用,大部分的功能都可以在它的子模塊中找到。
圖像濾波(image filtering):
使用 match_template() 方法實現 模板匹配(template matching):
在 展示頁面 可以看到更多相關的例子。
NumPy 提供了對數組的支持,是 Python 編程的一個核心庫。圖像的本質其實也是一個包含像素數據點的標准 NumPy 數組,因此可以通過一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以從像素級別對圖像進行編輯。通過 NumPy 數組存儲的圖像也可以被 skimage 載入並使用 matplotlib 顯示。
在 NumPy 的 官方文檔 中提供了完整的代碼文檔和資源列表。
使用 NumPy 對圖像進行 掩膜(mask)操作:
像 NumPy 一樣, SciPy 是 Python 的一個核心科學計算模塊,也可以用於圖像的基本操作和處理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模塊,它提供了在 n 維 NumPy 數組上的運行的函數。SciPy 目前還提供了 線性和非線性濾波(linear and non-linear filtering)、 二值形態學(binary morphology)、 B 樣條插值(B-spline interpolation)、 對象測量(object measurements)等方面的函數。
在 官方文檔 中可以查閱到 scipy.ndimage 的完整函數列表。
使用 SciPy 的 高斯濾波 對圖像進行模糊處理:
PIL (Python Imaging Library) 是一個免費 Python 編程庫,它提供了對多種格式圖像文件的打開、編輯、保存的支持。但在 2009 年之後 PIL 就停止發布新版本了。幸運的是,還有一個 PIL 的積極開發的分支 Pillow ,它的安裝過程比 PIL 更加簡單,支持大部分主流的操作系統,並且還支持 Python 3。Pillow 包含了圖像的基礎處理功能,包括像素點操作、使用內置卷積內核進行濾波、顏色空間轉換等等。
Pillow 的 官方文檔 提供了 Pillow 的安裝說明自己代碼庫中每一個模塊的示例。
使用 Pillow 中的 ImageFilter 模塊實現圖像增強:
OpenCV(Open Source Computer Vision 庫)是計算機視覺領域最廣泛使用的庫之一, OpenCV-Python 則是 OpenCV 的 Python API。OpenCV-Python 的運行速度很快,這歸功於它使用 C/C++ 編寫的後台代碼,同時由於它使用了 Python 進行封裝,因此調用和部署的難度也不大。這些優點讓 OpenCV-Python 成為了計算密集型計算機視覺應用程序的一個不錯的選擇。
入門之前最好先閱讀 OpenCV2-Python-Guide 這份文檔。
使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)將蘋果和橘子融合到一起:
SimpleCV 是一個開源的計算機視覺框架。它支持包括 OpenCV 在內的一些高性能計算機視覺庫,同時不需要去了解 位深度(bit depth)、文件格式、 色彩空間(color space)之類的概念,因此 SimpleCV 的學習曲線要比 OpenCV 平緩得多,正如它的口號所說,「將計算機視覺變得更簡單」。SimpleCV 的優點還有:
官方文檔 簡單易懂,同時也附有大量的學慣用例。
文檔 包含了安裝介紹、示例以及一些 Mahotas 的入門教程。
Mahotas 力求使用少量的代碼來實現功能。例如這個 Finding Wally 游戲 :
ITK (Insight Segmentation and Registration Toolkit)是一個為開發者提供普適性圖像分析功能的開源、跨平台工具套件, SimpleITK 則是基於 ITK 構建出來的一個簡化層,旨在促進 ITK 在快速原型設計、教育、解釋語言中的應用。SimpleITK 作為一個圖像分析工具包,它也帶有 大量的組件 ,可以支持常規的濾波、圖像分割、 圖像配准(registration)功能。盡管 SimpleITK 使用 C++ 編寫,但它也支持包括 Python 在內的大部分編程語言。
有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研領域中的應用,通過這些用例可以看到如何使用 Python 和 R 利用 SimpleITK 來實現互動式圖像分析。
使用 Python + SimpleITK 實現的 CT/MR 圖像配准過程:
pgmagick 是使用 Python 封裝的 GraphicsMagick 庫。 GraphicsMagick 通常被認為是圖像處理界的瑞士軍刀,因為它強大而又高效的工具包支持對多達 88 種主流格式圖像文件的讀寫操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。
pgmagick 的 GitHub 倉庫 中有相關的安裝說明、依賴列表,以及詳細的 使用指引 。
圖像縮放:
邊緣提取:
Cairo 是一個用於繪制矢量圖的二維圖形庫,而 Pycairo 是用於 Cairo 的一組 Python 綁定。矢量圖的優點在於做大小縮放的過程中不會丟失圖像的清晰度。使用 Pycairo 可以在 Python 中調用 Cairo 的相關命令。
Pycairo 的 GitHub 倉庫 提供了關於安裝和使用的詳細說明,以及一份簡要介紹 Pycairo 的 入門指南 。
使用 Pycairo 繪制線段、基本圖形、 徑向漸變(radial gradients):
以上就是 Python 中的一些有用的圖像處理庫,無論你有沒有聽說過、有沒有使用過,都值得試用一下並了解它們。
via: https://opensource.com/article/19/3/python-image-manipulation-tools
作者: Parul Pandey 選題: lujun9972 譯者: HankChow 校對: wxy
Ⅳ python是什麼
- 01
Python是一種面向對象的解釋型計算機程序設計語言,具有豐富和強大的庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。
Python是一種面向對象的解釋型計算機程序設計語言,由荷蘭人Guido van Rossum於1989年發明,第一個公開發行版發行於1991年。
Python作為當下最熱門的編程語言,在2018年世界腳本語言排行榜中位列榜首,已經成為了多個領域的首選語言。
發展歷程
自從20世紀90年代初Python語言誕生至今,它已被逐漸廣泛應用於系統管理任務的處理和Web編程。Python的創始人為Guido van Rossum。1989年聖誕節期間,在阿姆斯特丹,Guido為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,作為ABC 語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是取自英國20世紀70年代首播的電視喜劇《蒙提.派森乾的飛行馬戲團》(Monty Python's Flying Circus)。ABC是由Guido參加設計的一種教學語言。就Guido本人看來,ABC 這種語言非常優美和強大,是專門為非專業程序員設計的。但是ABC語言並沒有成功,究其原因,Guido 認為是其非開放造成的。Guido 決心在Python 中避免這一錯誤。同時,他還想實現在ABC 中閃現過但未曾實現的東西。就這樣,Python在Guido手中誕生了。可以說,Python是從ABC發展起來,主要受到了Mola-3(另一種相當優美且強大的語言,為小型團體所設計的)的影響。並且結合了Unix shell和C的習慣。Python已經成為最受歡迎的程序設計語言之一。自從2004年以後,python的使用率呈線性增長。2011年1月,它被TIOBE編程語言排行榜評為2010年度語言.由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。例如卡耐基梅隆大學的編程基礎、麻省理工學院的計算機科學及編程導論就使用Python語言講授。眾多開源的科學計算軟體包都提供了Python的調用介面,例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。而Python專用的科學計算擴展庫就更多了,例如如下3個十分經典的科學計算擴展庫:NumPy、SciPy和matplotlib,它們分別為Python提供了快速數組處理、數值運算以及繪圖功能。因此Python語言及其眾多的擴展庫所構成的開發環境十分適合工程技術、科研人員處理實驗數據、製作圖表,甚至開發科學計算應用程序。2018年3月,該語言作者在郵件列表上宣布Python 2.7將於2020年1月1日終止支持。用戶如果想要在這個日期之後繼續得到與Python 2.7有關的支持,則需要付費給商業供應商。
Python優點
1. 簡單
我們可以說Python是簡約的語言,非常易於讀寫,遇到問題時,程序員可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2. 免費
Python是免費開源的。這意味著程序員不用花錢,就可以共享、復制和交換它,這也幫助Python形成了強壯的社區,使用它更加完善,技術發展更快。專業人士可以在社區和初學者分享他們的知識和經驗。
3. 兼容性
Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
4. 面向對象
Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5. 庫
Python社區創造了一大堆各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
Python語言的用途
多年來,Python在各種流行編程語言中一直排名靠前。它幾乎可以適用任何開發,它旨在提高程序員的開發效率而不在於他們編的代碼。Python適用於網站、桌面應用開發,自動化腳本,復雜計算系統,科學計算,生命支持管理系統,物聯網,游戲,機器人,自然語言處理等很多方面。而且,既使對於那些從沒有開發經驗的人來講,Python的代碼也是簡潔易懂的。由於Python程序代碼簡單,所以和與其他程序語言相比,後期的程序維護更容易,更舒心。從商業角度來看,需要的成本降低,程序員的效率提高。
Ⅳ python的應用范圍有哪些
Python是一門簡單、易學並且很有前途的編程語言,很多人都對Python感興趣,但是當學完Python基礎用法之後,又會產生迷茫,尤其是自學的人員,不知道接下來的Python學習方向,以及學完之後能幹些什麼?以下是Python十大應用領域!
1. WEB開發
Python擁有很多免費數據函數庫、免費web網頁模板系統、以及與web伺服器進行交互的庫,可以實現web開發,搭建web框架,目前比較有名氣的Python web框架為Django。從事該領域應從數據、組件、安全等多領域進行學習,從底層了解其工作原理並可駕馭任何業內主流的Web框架。
2. 網路編程
網路編程是Python學習的另一方向,網路編程在生活和開發中無處不在,哪裡有通訊就有網路,它可以稱為是一切開發的「基石」。對於所有編程開發人員必須要知其然並知其所以然,所以網路部分將從協議、封包、解包等底層進行深入剖析。
3. 爬蟲開發
在爬蟲領域,Python幾乎是霸主地位,將網路一切數據作為資源,通過自動化程序進行有針對性的數據採集以及處理。從事該領域應學習爬蟲策略、高性能非同步IO、分布式爬蟲等,並針對Scrapy框架源碼進行深入剖析,從而理解其原理並實現自定義爬蟲框架。
4. 雲計算開發
Python是從事雲計算工作需要掌握的一門編程語言,目前很火的雲計算框架OpenStack就是由Python開發的,如果想要深入學習並進行二次開發,就需要具備Python的技能。
5. 人工智慧
MASA和Google早期大量使用Python,為Python積累了豐富的科學運算庫,當AI時代來臨後,Python從眾多編程語言中脫穎而出,各種人工智慧演算法都基於Python編寫,尤其PyTorch之後,Python作為AI時代頭牌語言的位置基本確定。
6. 自動化運維
Python是一門綜合性的語言,能滿足絕大部分自動化運維需求,前端和後端都可以做,從事該領域,應從設計層面、框架選擇、靈活性、擴展性、故障處理、以及如何優化等層面進行學習。
7. 金融分析
金融分析包含金融知識和Python相關模塊的學習,學習內容囊括Numpy\Pandas\Scipy數據分析模塊等,以及常見金融分析策略如「雙均線」、「周規則交易」、「羊駝策略」、「Dual Thrust 交易策略」等。
8. 科學運算
Python是一門很適合做科學計算的編程語言,97年開始,NASA就大量使用Python進行各種復雜的科學運算,隨著NumPy、SciPy、Matplotlib、Enthought librarys等眾多程序庫的開發,使得Python越來越適合做科學計算、繪制高質量的2D和3D圖像。
9. 游戲開發
在網路游戲開發中,Python也有很多應用,相比於Lua or C++,Python比Lua有更高階的抽象能力,可以用更少的代碼描述游戲業務邏輯,Python非常適合編寫1萬行以上的項目,而且能夠很好的把網游項目的規模控制在10萬行代碼以內。
10. 桌面軟體
Python在圖形界面開發上很強大,可以用tkinter/PyQT框架開發各種桌面軟體!
Ⅵ python c++ 在計算機視覺中哪個更好
推薦Python。
說到計算機視覺,就不能不提到
OpenCV,它是一個歷史悠久、功能豐富、社區活躍的開源視覺開發庫。它提供了計算機視覺以及圖像處理方面最常用最基礎的功能支持,是開發必備工具;而且它在新版本中緊跟潮流,加入對新的演算法、硬體的支持。
雖然OpenCV是基於C++編寫的,但是提供了Python、ruby等多種語言介面,這對於習慣用Python開發人工智慧的人來說是非常方便的,重點是OpenCV-Python是計算機視覺開發的利器。