當前位置:首頁 » 編程語言 » fft演算法c語言

fft演算法c語言

發布時間: 2023-09-23 13:55:55

① 求基2、基4、基8FFT(快速傅里葉變換)的c語言程序,要能運行得出來的

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

typedef struct{
double r;
double i;
}my_complex
;

//檢查a是否為2的整數次方數
#define NOT2POW(a) (((a)-1)&(a)||(a)<=0)
//pi
#define MYPI 3.14159265358979323846

my_complex* fft(const my_complex* x, unsigned int len){
unsigned int ex=0,t=len;
unsigned int i,j,k;
my_complex *y;
double tr,ti,rr,ri,yr,yi;

if(NOT2POW(len)) return NULL; //如果失敗,返回空指針
for(;!(t&1);t>>=1) ex++; //len應該等於2的ex次方

y=(my_complex*)malloc(len*sizeof(my_complex));
if(!y) return NULL;

//變址計算,庫里-圖基演算法
for(i=0;i<len;i++){
k=i;
j=0;
t=ex;
while((t--)>0){
j<<=1;
j|=k&1;
k>>=1;
}
if(j>=i){
y[i]=x[j];
y[j]=x[i];
}
}

//用變址後的y向量進行計算
for(i=0;i<ex;i++){
t=1<<i;
for(j=0;j<len;j+=t<<1){
for(k=0;k<t;k++){
ti=-MYPI*k/t;
rr=cos(ti);
ri=sin(ti);

tr=y[j+k+t].r;
ti=y[j+k+t].i;

yr=rr*tr-ri*ti;
yi=rr*ti+ri*tr;

tr=y[j+k].r;
ti=y[j+k].i;

y[j+k].r=tr+yr;
y[j+k].i=ti+yi;
y[j+k+t].r=tr-yr;
y[j+k+t].i=ti-yi;
}
}
}

return y;
}

//以下為測試
int main()
{
int i,DATA_LEN;
my_complex *x,*y;

printf("基二FFT測試\n輸入生成序列長度:");
scanf("%d",&DATA_LEN);
x=(my_complex*)malloc(DATA_LEN*sizeof(my_complex));

for(i=0;i<DATA_LEN;i++){
x[i].r=i;
x[i].i=i-1;
}

printf("處理前...\n實部\t\t虛部\n");
for(i=0;i<DATA_LEN;i++)
printf("%lf\t%lf\n",x[i].r,x[i].i);

y=fft(x,DATA_LEN);
if(!y){
printf("序列長度不為2的整數次方!\n");
return 0;
}

printf("處理後...\n實部\t\t虛部\n");
for(i=0;i<DATA_LEN;i++)
printf("%lf\t%lf\n",y[i].r,y[i].i);

free(y);
free(x);

return 0;
}

② 基於FFT的演算法優化 要C語言完整程序(利用旋轉因子的性質),有的請留言,答謝!!!(有核心代碼,望指教

實現(C描述)

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

//#include "complex.h"

// --------------------------------------------------------------------------

#define N 8 //64

#define M 3 //6 //2^m=N

#define PI 3.1415926

// --------------------------------------------------------------------------

float twiddle[N/2] = {1.0, 0.707, 0.0, -0.707};

float x_r[N] = {1, 1, 1, 1, 0, 0, 0, 0};

float x_i[N]; //N=8

/*

float twiddle[N/2] = {1, 0.9951, 0.9808, 0.9570, 0.9239, 0.8820, 0.8317, 0.7733,

0.7075, 0.6349, 0.5561, 0.4721, 0.3835, 0.2912, 0.1961, 0.0991,

0.0000,-0.0991,-0.1961,-0.2912,-0.3835,-0.4721,-0.5561,-0.6349,

-0.7075,-0.7733, 0.8317,-0.8820,-0.9239,-0.9570,-0.9808,-0.9951}; //N=64

float x_r[N]={1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,};

float x_i[N];

*/

FILE *fp;

// ----------------------------------- func -----------------------------------

/**

* 初始化輸出虛部

*/

static void fft_init( void )

{

int i;

for(i=0; i<N; i++) x_i[i] = 0.0;

}

/**

* 反轉演算法.將時域信號重新排序.

* 這個演算法有改進的空間

*/

static void bitrev( void )

{

int p=1, q, i;

int bit_rev[ N ]; //

float xx_r[ N ]; //

bit_rev[ 0 ] = 0;

while( p < N )

{

for(q=0; q<p; q++)

{

bit_rev[ q ] = bit_rev[ q ] * 2;

bit_rev[ q + p ] = bit_rev[ q ] + 1;

}

p *= 2;

}

for(i=0; i<N; i++) xx_r[ i ] = x_r[ i ];

for(i=0; i<N; i++) x_r[i] = xx_r[ bit_rev[i] ];

}

/* ------------ add by sshc625 ------------ */

static void bitrev2( void )

{

return ;

}

/* */

void display( void )

{

printf("\n\n");

int i;

for(i=0; i<N; i++)

printf("%f\t%f\n", x_r[i], x_i[i]);

}

/**

*

*/

void fft1( void )

{ fp = fopen("log1.txt", "a+");

int L, i, b, j, p, k, tx1, tx2;

float TR, TI, temp; // 臨時變數

float tw1, tw2;

/* 深M. 對層進行循環. L為當前層, 總層數為M. */

for(L=1; L<=M; L++)

{

fprintf(fp,"----------Layer=%d----------\n", L);

/* b的意義非常重大,b表示當前層的顆粒具有的輸入樣本點數 */

b = 1;

i = L - 1;

while(i > 0)

{

b *= 2;

i--;

}

// -------------- 是否外層對顆粒循環, 內層對樣本點循環邏輯性更強一些呢! --------------

/*

* outter對參與DFT的樣本點進行循環

* L=1, 循環了1次(4個顆粒, 每個顆粒2個樣本點)

* L=2, 循環了2次(2個顆粒, 每個顆粒4個樣本點)

* L=3, 循環了4次(1個顆粒, 每個顆粒8個樣本點)

*/

for(j=0; j<b; j++)

{

/* 求旋轉因子tw1 */

p = 1;

i = M - L; // M是為總層數, L為當前層.

while(i > 0)

{

p = p*2;

i--;

}

p = p * j;

tx1 = p % N;

tx2 = tx1 + 3*N/4;

tx2 = tx2 % N;

// tw1是cos部分, 實部; tw2是sin部分, 虛數部分.

tw1 = ( tx1>=N/2)? -twiddle[tx1-N/2] : twiddle[ tx1 ];

tw2 = ( tx2>=N/2)? -twiddle[tx2-(N/2)] : twiddle[tx2];

/*

* inner對顆粒進行循環

* L=1, 循環了4次(4個顆粒, 每個顆粒2個輸入)

* L=2, 循環了2次(2個顆粒, 每個顆粒4個輸入)

* L=3, 循環了1次(1個顆粒, 每個顆粒8個輸入)

*/

for(k=j; k<N; k=k+2*b)

{

TR = x_r[k]; // TR就是A, x_r[k+b]就是B.

TI = x_i[k];

temp = x_r[k+b];

/*

* 如果復習一下 (a+j*b)(c+j*d)兩個復數相乘後的實部虛部分別是什麼

* 就能理解為什麼會如下運算了, 只有在L=1時候輸入才是實數, 之後層的

* 輸入都是復數, 為了讓所有的層的輸入都是復數, 我們只好讓L=1時候的

* 輸入虛部為0

* x_i[k+b]*tw2是兩個虛數相乘

*/

fprintf(fp, "tw1=%f, tw2=%f\n", tw1, tw2);

x_r[k] = TR + x_r[k+b]*tw1 + x_i[k+b]*tw2;

x_i[k] = TI - x_r[k+b]*tw2 + x_i[k+b]*tw1;

x_r[k+b] = TR - x_r[k+b]*tw1 - x_i[k+b]*tw2;

x_i[k+b] = TI + temp*tw2 - x_i[k+b]*tw1;

fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k, x_r[k], x_i[k]);

fprintf(fp, "k=%d, x_r[k]=%f, x_i[k]=%f\n", k+b, x_r[k+b], x_i[k+b]);

} //

} //

} //

}

/**

* ------------ add by sshc625 ------------

* 該實現的流程為

* for( Layer )

* for( Granule )

* for( Sample )

*

*

*

*

*/

void fft2( void )

{ fp = fopen("log2.txt", "a+");

int cur_layer, gr_num, i, k, p;

float tmp_real, tmp_imag, temp; // 臨時變數, 記錄實部

float tw1, tw2;// 旋轉因子,tw1為旋轉因子的實部cos部分, tw2為旋轉因子的虛部sin部分.

int step; // 步進

int sample_num; // 顆粒的樣本總數(各層不同, 因為各層顆粒的輸入不同)

/* 對層循環 */

for(cur_layer=1; cur_layer<=M; cur_layer++)

{

/* 求當前層擁有多少個顆粒(gr_num) */

gr_num = 1;

i = M - cur_layer;

while(i > 0)

{

i--;

gr_num *= 2;

}

/* 每個顆粒的輸入樣本數N' */

sample_num = (int)pow(2, cur_layer);

/* 步進. 步進是N'/2 */

step = sample_num/2;

/* */

k = 0;

/* 對顆粒進行循環 */

for(i=0; i<gr_num; i++)

{

/*

* 對樣本點進行循環, 注意上限和步進

*/

for(p=0; p<sample_num/2; p++)

{

// 旋轉因子, 需要優化...

tw1 = cos(2*PI*p/pow(2, cur_layer));

tw2 = -sin(2*PI*p/pow(2, cur_layer));

tmp_real = x_r[k+p];

tmp_imag = x_i[k+p];

temp = x_r[k+p+step];

/*(tw1+jtw2)(x_r[k]+jx_i[k])

*

* real : tw1*x_r[k] - tw2*x_i[k]

* imag : tw1*x_i[k] + tw2*x_r[k]

* 我想不抽象出一個

* typedef struct {

* double real; // 實部

* double imag; // 虛部

* } complex; 以及針對complex的操作

* 來簡化復數運算是否是因為效率上的考慮!

*/

/* 蝶形演算法 */

x_r[k+p] = tmp_real + ( tw1*x_r[k+p+step] - tw2*x_i[k+p+step] );

x_i[k+p] = tmp_imag + ( tw2*x_r[k+p+step] + tw1*x_i[k+p+step] );

/* X[k] = A(k)+WB(k)

* X[k+N/2] = A(k)-WB(k) 的性質可以優化這里*/

// 旋轉因子, 需要優化...

tw1 = cos(2*PI*(p+step)/pow(2, cur_layer));

tw2 = -sin(2*PI*(p+step)/pow(2, cur_layer));

x_r[k+p+step] = tmp_real + ( tw1*temp - tw2*x_i[k+p+step] );

x_i[k+p+step] = tmp_imag + ( tw2*temp + tw1*x_i[k+p+step] );

printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p, x_r[k+p], x_i[k+p]);

printf("k=%d, x_r[k]=%f, x_i[k]=%f\n", k+p+step, x_r[k+p+step], x_i[k+p+step]);

}

/* 開跳!:) */

k += 2*step;

}

}

}

/*

* 後記:

* 究竟是顆粒在外層循環還是樣本輸入在外層, 好象也差不多, 復雜度完全一樣.

* 但以我資質愚鈍花費了不少時間才弄明白這數十行代碼.

* 從中我發現一個於我非常有幫助的教訓, 很久以前我寫過一部分演算法, 其中絕大多數都是遞歸.

* 將數據量減少, 減少再減少, 用歸納的方式來找出數據量加大代碼的規律

* 比如FFT

* 1. 先寫死LayerI的代碼; 然後再把LayerI的輸出作為LayerII的輸入, 又寫死代碼; ......

* 大約3層就可以統計出規律來. 這和遞歸也是一樣, 先寫死一兩層, 自然就出來了!

* 2. 有的功能可以寫偽代碼, 不急於求出結果, 降低復雜性, 把邏輯結果定出來後再添加.

* 比如旋轉因子就可以寫死, 就寫1.0. 流程出來後再寫旋轉因子.

* 寥寥數語, 我可真是流了不少汗! Happy!

*/

void dft( void )

{

int i, n, k, tx1, tx2;

float tw1,tw2;

float xx_r[N],xx_i[N];

/*

* clear any data in Real and Imaginary result arrays prior to DFT

*/

for(k=0; k<=N-1; k++)

xx_r[k] = xx_i[k] = x_i[k] = 0.0;

// caculate the DFT

for(k=0; k<=(N-1); k++)

{

for(n=0; n<=(N-1); n++)

{

tx1 = (n*k);

tx2 = tx1+(3*N)/4;

tx1 = tx1%(N);

tx2 = tx2%(N);

if(tx1 >= (N/2))

tw1 = -twiddle[tx1-(N/2)];

else

tw1 = twiddle[tx1];

if(tx2 >= (N/2))

tw2 = -twiddle[tx2-(N/2)];

else

tw2 = twiddle[tx2];

xx_r[k] = xx_r[k]+x_r[n]*tw1;

xx_i[k] = xx_i[k]+x_r[n]*tw2;

}

xx_i[k] = -xx_i[k];

}

// display

for(i=0; i<N; i++)

printf("%f\t%f\n", xx_r[i], xx_i[i]);

}

// ---------------------------------------------------------------------------

int main( void )

{

fft_init( );

bitrev( );

// bitrev2( );

//fft1( );

fft2( );

display( );

system( "pause" );

// dft();

return 1;

}

本文來自CSDN博客,轉載請標明出處:http://blog.csdn.net/sshcx/archive/2007/06/14/1651616.aspx

③ 如何用FFT得到諧波幅值頻率和相位

用FFT得到諧波的頻譜,裡面含有頻率,幅度和相位,同時可以通過這個三個而求得其他參數。
FFT是一種DFT的高效演算法,稱為快速傅立葉變換(fast Fourier transform),它根據離散傅氏變換的奇、偶、虛、實等特性,對離散傅立葉變換的演算法進行改進獲得的。FFT對傅氏變換的理論並沒有新的發現,但是對於在計算機系統或者說數字系統中應用離散傅立葉變換,可以說是進了一大步。

④ 怎樣用C語言實現FFT演算法啊

1、二維FFT相當於對行和列分別進行一維FFT運算。具體的實現辦法如下:
先對各行逐一進行一維FFT,然後再對變換後的新矩陣的各列逐一進行一維FFT。相應的偽代碼如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩陣的第i行。注意這只是一個簡單的記法,並不能完全照抄。還需要通過一些語句來生成各行的數據。同理,COL[i]是對矩陣的第i列的一種簡單表示方法。
所以,關鍵是一維FFT演算法的實現。

2、常式:

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#defineN1000
/*定義復數類型*/
typedefstruct{
doublereal;
doubleimg;
}complex;
complexx[N],*W;/*輸入序列,變換核*/
intsize_x=0;/*輸入序列的大小,在本程序中僅限2的次冪*/
doublePI;/*圓周率*/
voidfft();/*快速傅里葉變換*/
voidinitW();/*初始化變換核*/
voidchange();/*變址*/
voidadd(complex,complex,complex*);/*復數加法*/
voidmul(complex,complex,complex*);/*復數乘法*/
voidsub(complex,complex,complex*);/*復數減法*/
voidoutput();
intmain(){
inti;/*輸出結果*/
system("cls");
PI=atan(1)*4;
printf("Pleaseinputthesizeofx: ");
scanf("%d",&size_x);
printf("Pleaseinputthedatainx[N]: ");
for(i=0;i<size_x;i++)
scanf("%lf%lf",&x[i].real,&x[i].img);
initW();
fft();
output();
return0;
}
/*快速傅里葉變換*/
voidfft(){
inti=0,j=0,k=0,l=0;
complexup,down,proct;
change();
for(i=0;i<log(size_x)/log(2);i++){/*一級蝶形運算*/
l=1<<i;
for(j=0;j<size_x;j+=2*l){/*一組蝶形運算*/
for(k=0;k<l;k++){/*一個蝶形運算*/
mul(x[j+k+l],W[size_x*k/2/l],&proct);
add(x[j+k],proct,&up);
sub(x[j+k],proct,&down);
x[j+k]=up;
x[j+k+l]=down;
}
}
}
}
/*初始化變換核*/
voidinitW(){
inti;
W=(complex*)malloc(sizeof(complex)*size_x);
for(i=0;i<size_x;i++){
W[i].real=cos(2*PI/size_x*i);
W[i].img=-1*sin(2*PI/size_x*i);
}
}
/*變址計算,將x(n)碼位倒置*/
voidchange(){
complextemp;
unsignedshorti=0,j=0,k=0;
doublet;
for(i=0;i<size_x;i++){
k=i;j=0;
t=(log(size_x)/log(2));
while((t--)>0){
j=j<<1;
j|=(k&1);
k=k>>1;
}
if(j>i){
temp=x[i];
x[i]=x[j];
x[j]=temp;
}
}
}
/*輸出傅里葉變換的結果*/
voidoutput(){
inti;
printf("Theresultareasfollows ");
for(i=0;i<size_x;i++){
printf("%.4f",x[i].real);
if(x[i].img>=0.0001)printf("+%.4fj ",x[i].img);
elseif(fabs(x[i].img)<0.0001)printf(" ");
elseprintf("%.4fj ",x[i].img);
}
}
voidadd(complexa,complexb,complex*c){
c->real=a.real+b.real;
c->img=a.img+b.img;
}
voidmul(complexa,complexb,complex*c){
c->real=a.real*b.real-a.img*b.img;
c->img=a.real*b.img+a.img*b.real;
}
voidsub(complexa,complexb,complex*c){
c->real=a.real-b.real;
c->img=a.img-b.img;
}
熱點內容
androidgetpath 發布:2025-03-07 03:07:30 瀏覽:474
aspphp環境 發布:2025-03-07 02:40:38 瀏覽:382
c語言漢字轉拼音 發布:2025-03-07 02:26:05 瀏覽:557
磁碟與資料庫 發布:2025-03-07 02:19:54 瀏覽:561
微信的緩存是什麼 發布:2025-03-07 02:15:17 瀏覽:995
sql添加表數據 發布:2025-03-07 02:15:16 瀏覽:593
其他台式電腦怎麼登錄伺服器 發布:2025-03-07 02:09:45 瀏覽:106
數控車床g76編程實例 發布:2025-03-07 02:07:43 瀏覽:662
魔獸世界新伺服器是什麼意思 發布:2025-03-07 02:07:41 瀏覽:619
ftp傳輸二進制 發布:2025-03-07 01:57:26 瀏覽:286