當前位置:首頁 » 編程語言 » python多核多線程

python多核多線程

發布時間: 2023-09-19 07:22:28

python多線程只第一個while循環

Python 多線程只執行第一個 while 循環的原因是因為 Python 的全局鎖 (GIL) 的存在。GIL 是為了保證多線程操作時不會出現數據競爭和死鎖的問題,它會確保在任意時刻只有一個線程在執行 Python 代碼。雖然多線程在 Python 中可以提高程序的並發性,但是由於 GIL 的存在,導致 Python 的多線程無法真正地實現並行計算。因此,在 Python 中,多線程適合於 IO 密集型任務,而不適合於 CPU 密集型任務。

對於如何解決多線程只執行第一個 while 循環的問題,可以使用多進程和協程來代替多線程。多進程可以在不同的進程中運行 Python 代碼,每個進程都有自己的 GIL,因此可以實現真正的並行計算。而協程則是一種輕量級的線程,它不需要像線程一樣佔用系統資源,只需要在程序內部切換來實現並發計算皮渣。悔睜因此,在 Python 中,多進程和協程都是比較好的並發編程方式。

需要注意的是,多線程雖然存在 GIL 的限制,但對於一些 IO 密集型任務,多線程仍然可以提高程序的並發能力,因為在 IO 操作時,線程會釋放 GIL,從而可以讓其他線程進入運行狀態。因此,在實際編程中,需要燃前悄根據具體的任務需求,選擇合適的並發編程方式。

⑵ Python中的多進程與多線程/分布式該如何使用

Python提供了非常好用的多進程包multiprocessing,你只需要定義一個函數,Python會替你完成其他所有事情。
藉助這個包,可以輕松完成從單進程到並發執行的轉換。
1、新建單一進程
如果我們新建少量進程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用進程池
是的,你沒有看錯,不是線程池。它可以讓你跑滿多核CPU,而且使用方法非常簡單。
注意要用apply_async,如果落下async,就變成阻塞版本了。
processes=4是最多並發進程數量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,並需要關注結果
更多的時候,我們不僅需要多進程執行,還需要關注每個進程的執行結果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根據網友評論中的反饋,在Windows下運行有可能崩潰(開啟了一大堆新窗口、進程),可以通過如下調用來解決:
multiprocessing.freeze_support()1
附錄(自己的腳本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用進程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加線程到線程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #創建多線程任務
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待線程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break

⑶ m1macpython如何調用多核

1、纖穗首先多進程是在各自單獨的進程內慧腔存管理下運行代碼,而多線程是共享一個進程內存。
2、其次首先打開m1macpython,點擊主界面。
3、最後在主菜單點擊調用多核即可毀碧卜。

⑷ python的多線程為什麼不能利用多核CPU

因為python的解釋器cpython中有 GIL全局解釋器鎖,他保證了解釋器一次只能跑一個線程,並不能實現並行,而只能實現並發,所以就算你有再多的核,也不能用上。

⑸ python 多進程和多線程配合

由於python的多線程中存在PIL鎖,因此python的多線程不能利用多核,那麼,由於現在的計算機是多核的,就不能充分利用計算機的多核資源。但是python中的多進程是可以跑在不同的cpu上的。因此,嘗試了多進程+多線程的方式,來做一個任務。比如:從中科大的鏡像源中下載多個rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()

regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)

rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)

thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25

res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'

start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718

代碼的功能主要是這樣的:
main()方法中調用get_rpm_url_list(base_url)方法,獲取要下載的每個rpm包的具體的url地址。其中base_url即中科大基礎的鏡像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,這個地址下有幾十個rpm包,get_rpm_url_list方法將每個rpm包的url地址拼出來並返回。
multi_process(rpm_url_list)啟動多進程方法,在該方法中,會調用多線程方法。該方法啟動4個多進程,將上面方法得到的rpm包的url地址進行分組,分成4組,然後每一個組中的rpm包再最後由不同的線程去執行。從而達到了多進程+多線程的配合使用。
代碼還有需要改進的地方,比如多進程啟動的進程個數和rpm包的url地址分組是硬編碼,這個還需要改進,畢竟,不同的機器,適合同時啟動的進程個數是不同的。

⑹ python之多線程

進程的概念:以一個整體的形式暴露給操作系統管理,裡麵包含各種資源的調用。 對各種資源管理的集合就可以稱為進程。
線程的概念:是操作系統能夠進行運算調度的最小單位。本質上就是一串指令的集合。

進程和線程的區別:
1、線程共享內存空間,進程有獨立的內存空間。
2、線程啟動速度快,進程啟動速度慢。注意:二者的運行速度是無法比較的。
3、線程是執行的指令集,進程是資源的集合
4、兩個子進程之間數據不共享,完全獨立。同一個進程下的線程共享同一份數據。
5、創建新的線程很簡單,創建新的進程需要對他的父進程進行一次克隆。
6、一個線程可以操作(控制)同一進程里的其他線程,但是進程只能操作子進程
7、同一個進程的線程可以直接交流,兩個進程想要通信,必須通過一個中間代理來實現。
8、對於線程的修改,可能會影響到其他線程的行為。但是對於父進程的修改不會影響到子進程。

第一個程序,使用循環來創建線程,但是這個程序中一共有51個線程,我們創建了50個線程,但是還有一個程序本身的線程,是主線程。這51個線程是並行的。注意:這個程序中是主線程啟動了子線程。

相比上個程序,這個程序多了一步計算時間,但是我們觀察結果會發現,程序顯示的執行時間只有0.007秒,這是因為最後一個print函數它存在於主線程,而整個程序主線程和所有子線程是並行的,那麼可想而知,在子線程還沒有執行完畢的時候print函數就已經執行了,總的來說,這個時間只是執行了一個線程也就是主線程所用的時間。

接下來這個程序,吸取了上面這個程序的缺點,創建了一個列表,把所有的線程實例都存進去,然後使用一個for循環依次對線程實例調用join方法,這樣就可以使得主線程等待所創建的所有子線程執行完畢才能往下走。 注意實驗結果:和兩個線程的結果都是兩秒多一點

注意觀察實驗結果,並沒有執行列印task has done,並且程序執行時間極其短。
這是因為在主線程啟動子線程前把子線程設置為守護線程。
只要主線程執行完畢,不管子線程是否執行完畢,就結束。但是會等待非守護線程執行完畢
主線程退出,守護線程全部強制退出。皇帝死了,僕人也跟著殉葬
應用的場景 : socket-server

注意:gil只是為了減低程序開發復雜度。但是在2.幾的版本上,需要加用戶態的鎖(gil的缺陷)而在3點幾的版本上,加鎖不加鎖都一樣。

下面這個程序是一個典型的生產者消費者模型。
生產者消費者模型是經典的在開發架構中使用的模型
運維中的集群就是生產者消費者模型,生活中很多都是

那麼,多線程的使用場景是什麼?
python中的多線程實質上是對上下文的不斷切換,可以說是假的多線程。而我們知道,io操作不佔用cpu,計算佔用cpu,那麼python的多線程適合io操作密集的任務,比如socket-server,那麼cpu密集型的任務,python怎麼處理?python可以折中的利用計算機的多核:啟動八個進程,每個進程有一個線程。這樣就可以利用多進程解決多核問題。

⑺ python的多線程是否能利用多核計算

比方我有一個4核的CPU,那麼這樣一來,在單位時間內每個核只能跑一個線程,然後時間片輪轉切換。但是Python不一樣,它不管你有幾個核,單位時間多個核只能跑一個線程,然後時間片輪轉。看起來很不可思議?但是這就是GIL搞的鬼。任何Python線程執行前,必須先獲得GIL鎖,然後,每執行100條位元組碼,解釋器就自動釋放GIL鎖,讓別的線程有機會執行。這個GIL全局鎖實際上把所有線程的執行代碼都給上了鎖,所以,多線程在Python中只能交替執行,即使100個線程跑在100核CPU上,也只能用到1個核。通常我們用的解釋器是官方實現的CPython,要真正利用多核,除非重寫一個不帶GIL的解釋器。

⑻ 一篇文章帶你深度解析Python線程和進程

使用Python中的線程模塊,能夠同時運行程序的不同部分,並簡化設計。如果你已經入門Python,並且想用線程來提升程序運行速度的話,希望這篇教程會對你有所幫助。

線程與進程

什麼是進程

進程是系統進行資源分配和調度的一個獨立單位 進程是具有一定獨立功能的程序關於某個數據集合上的一次運行活動,進程是系統進行資源分配和調度的一個獨立單位。每個進程都有自己的獨立內存空間,不同進程通過進程間通信來通信。由於進程比較重量,占據獨立的內存,所以上下文進程間的切換開銷(棧、寄存器、虛擬內存、文件句柄等)比較大,但相對比較穩定安全。

什麼是線程

CPU調度和分派的基本單位 線程是進程的一個實體,是CPU調度和分派的基本單位,它是比進程更小的能獨立運行的基本單位.線程自己基本上不擁有系統資源,只擁有一點在運行中必不可少的資源(如程序計數器,一組寄存器和棧),但是它可與同屬一個進程的其他的線程共享進程所擁有的全部資源。線程間通信主要通過共享內存,上下文切換很快,資源開銷較少,但相比進程不夠穩定容易丟失數據。

進程與線程的關系圖

線程與進程的區別:

進程

現實生活中,有很多的場景中的事情是同時進行的,比如開車的時候 手和腳共同來駕駛 汽車 ,比如唱歌跳舞也是同時進行的,再比如邊吃飯邊打電話;試想如果我們吃飯的時候有一個領導來電,我們肯定是立刻就接聽了。但是如果你吃完飯再接聽或者回電話,很可能會被開除。

注意:

多任務的概念

什麼叫 多任務 呢?簡單地說,就是操作系統可以同時運行多個任務。打個比方,你一邊在用瀏覽器上網,一邊在聽MP3,一邊在用Word趕作業,這就是多任務,至少同時有3個任務正在運行。還有很多任務悄悄地在後台同時運行著,只是桌面上沒有顯示而已。

現在,多核CPU已經非常普及了,但是,即使過去的單核CPU,也可以執行多任務。由於CPU執行代碼都是順序執行的,那麼,單核CPU是怎麼執行多任務的呢?

答案就是操作系統輪流讓各個任務交替執行,任務1執行0.01秒,切換到任務2,任務2執行0.01秒,再切換到任務3,執行0.01秒,這樣反復執行下去。表面上看,每個任務都是交替執行的,但是,由於CPU的執行速度實在是太快了,我們感覺就像所有任務都在同時執行一樣。

真正的並行執行多任務只能在多核CPU上實現,但是,由於任務數量遠遠多於CPU的核心數量,所以,操作系統也會自動把很多任務輪流調度到每個核心上執行。 其實就是CPU執行速度太快啦!以至於我們感受不到在輪流調度。

並行與並發

並行(Parallelism)

並行:指兩個或兩個以上事件(或線程)在同一時刻發生,是真正意義上的不同事件或線程在同一時刻,在不同CPU資源呢上(多核),同時執行。

特點

並發(Concurrency)

指一個物理CPU(也可以多個物理CPU) 在若幹道程序(或線程)之間多路復用,並發性是對有限物理資源強制行使多用戶共享以提高效率。

特點

multiprocess.Process模塊

process模塊是一個創建進程的模塊,藉助這個模塊,就可以完成進程的創建。

語法:Process([group [, target [, name [, args [, kwargs]]]]])

由該類實例化得到的對象,表示一個子進程中的任務(尚未啟動)。

注意:1. 必須使用關鍵字方式來指定參數;2. args指定的為傳給target函數的位置參數,是一個元祖形式,必須有逗號。

參數介紹:

group:參數未使用,默認值為None。

target:表示調用對象,即子進程要執行的任務。

args:表示調用的位置參數元祖。

kwargs:表示調用對象的字典。如kwargs = {'name':Jack, 'age':18}。

name:子進程名稱。

代碼:

除了上面這些開啟進程的方法之外,還有一種以繼承Process的方式開啟進程的方式:

通過上面的研究,我們千方百計實現了程序的非同步,讓多個任務可以同時在幾個進程中並發處理,他們之間的運行沒有順序,一旦開啟也不受我們控制。盡管並發編程讓我們能更加充分的利用IO資源,但是也給我們帶來了新的問題。

當多個進程使用同一份數據資源的時候,就會引發數據安全或順序混亂問題,我們可以考慮加鎖,我們以模擬搶票為例,來看看數據安全的重要性。

加鎖可以保證多個進程修改同一塊數據時,同一時間只能有一個任務可以進行修改,即串列的修改。加鎖犧牲了速度,但是卻保證了數據的安全。

因此我們最好找尋一種解決方案能夠兼顧:1、效率高(多個進程共享一塊內存的數據)2、幫我們處理好鎖問題。

mutiprocessing模塊為我們提供的基於消息的IPC通信機制:隊列和管道。隊列和管道都是將數據存放於內存中 隊列又是基於(管道+鎖)實現的,可以讓我們從復雜的鎖問題中解脫出來, 我們應該盡量避免使用共享數據,盡可能使用消息傳遞和隊列,避免處理復雜的同步和鎖問題,而且在進程數目增多時,往往可以獲得更好的可獲展性( 後續擴展該內容 )。

線程

Python的threading模塊

Python 供了幾個用於多線程編程的模塊,包括 thread, threading 和 Queue 等。thread 和 threading 模塊允許程序員創建和管理線程。thread 模塊 供了基本的線程和鎖的支持,而 threading 供了更高級別,功能更強的線程管理的功能。Queue 模塊允許用戶創建一個可以用於多個線程之間 共享數據的隊列數據結構。

python創建和執行線程

創建線程代碼

1. 創建方法一:

2. 創建方法二:

進程和線程都是實現多任務的一種方式,例如:在同一台計算機上能同時運行多個QQ(進程),一個QQ可以打開多個聊天窗口(線程)。資源共享:進程不能共享資源,而線程共享所在進程的地址空間和其他資源,同時,線程有自己的棧和棧指針。所以在一個進程內的所有線程共享全局變數,但多線程對全局變數的更改會導致變數值得混亂。

代碼演示:

得到的結果是:

首先需要明確的一點是GIL並不是Python的特性,它是在實現Python解析器(CPython)時所引入的一個概念。就好比C++是一套語言(語法)標准,但是可以用不同的編譯器來編譯成可執行代碼。同樣一段代碼可以通過CPython,PyPy,Psyco等不同的Python執行環境來執行(其中的JPython就沒有GIL)。

那麼CPython實現中的GIL又是什麼呢?GIL全稱Global Interpreter Lock為了避免誤導,我們還是來看一下官方給出的解釋:

主要意思為:

因此,解釋器實際上被一個全局解釋器鎖保護著,它確保任何時候都只有一個Python線程執行。在多線程環境中,Python 虛擬機按以下方式執行:

由於GIL的存在,Python的多線程不能稱之為嚴格的多線程。因為 多線程下每個線程在執行的過程中都需要先獲取GIL,保證同一時刻只有一個線程在運行。

由於GIL的存在,即使是多線程,事實上同一時刻只能保證一個線程在運行, 既然這樣多線程的運行效率不就和單線程一樣了嗎,那為什麼還要使用多線程呢?

由於以前的電腦基本都是單核CPU,多線程和單線程幾乎看不出差別,可是由於計算機的迅速發展,現在的電腦幾乎都是多核CPU了,最少也是兩個核心數的,這時差別就出來了:通過之前的案例我們已經知道,即使在多核CPU中,多線程同一時刻也只有一個線程在運行,這樣不僅不能利用多核CPU的優勢,反而由於每個線程在多個CPU上是交替執行的,導致在不同CPU上切換時造成資源的浪費,反而會更慢。即原因是一個進程只存在一把gil鎖,當在執行多個線程時,內部會爭搶gil鎖,這會造成當某一個線程沒有搶到鎖的時候會讓cpu等待,進而不能合理利用多核cpu資源。

但是在使用多線程抓取網頁內容時,遇到IO阻塞時,正在執行的線程會暫時釋放GIL鎖,這時其它線程會利用這個空隙時間,執行自己的代碼,因此多線程抓取比單線程抓取性能要好,所以我們還是要使用多線程的。

GIL對多線程Python程序的影響

程序的性能受到計算密集型(CPU)的程序限制和I/O密集型的程序限制影響,那什麼是計算密集型和I/O密集型程序呢?

計算密集型:要進行大量的數值計算,例如進行上億的數字計算、計算圓周率、對視頻進行高清解碼等等。這種計算密集型任務雖然也可以用多任務完成,但是花費的主要時間在任務切換的時間,此時CPU執行任務的效率比較低。

IO密集型:涉及到網路請求(time.sleep())、磁碟IO的任務都是IO密集型任務,這類任務的特點是CPU消耗很少,任務的大部分時間都在等待IO操作完成(因為IO的速度遠遠低於CPU和內存的速度)。對於IO密集型任務,任務越多,CPU效率越高,但也有一個限度。

當然為了避免GIL對我們程序產生影響,我們也可以使用,線程鎖。

Lock&RLock

常用的資源共享鎖機制:有Lock、RLock、Semphore、Condition等,簡單給大家分享下Lock和RLock。

Lock

特點就是執行速度慢,但是保證了數據的安全性

RLock

使用鎖代碼操作不當就會產生死鎖的情況。

什麼是死鎖

死鎖:當線程A持有獨占鎖a,並嘗試去獲取獨占鎖b的同時,線程B持有獨占鎖b,並嘗試獲取獨占鎖a的情況下,就會發生AB兩個線程由於互相持有對方需要的鎖,而發生的阻塞現象,我們稱為死鎖。即死鎖是指多個進程因競爭資源而造成的一種僵局,若無外力作用,這些進程都將無法向前推進。

所以,在系統設計、進程調度等方面注意如何不讓這四個必要條件成立,如何確定資源的合理分配演算法,避免進程永久占據系統資源。

死鎖代碼

python線程間通信

如果各個線程之間各干各的,確實不需要通信,這樣的代碼也十分的簡單。但這一般是不可能的,至少線程要和主線程進行通信,不然計算結果等內容無法取回。而實際情況中要復雜的多,多個線程間需要交換數據,才能得到正確的執行結果。

python中Queue是消息隊列,提供線程間通信機制,python3中重名為為queue,queue模塊塊下提供了幾個阻塞隊列,這些隊列主要用於實現線程通信。

在 queue 模塊下主要提供了三個類,分別代表三種隊列,它們的主要區別就在於進隊列、出隊列的不同。

簡單代碼演示

此時代碼會阻塞,因為queue中內容已滿,此時可以在第四個queue.put('蘋果')後面添加timeout,則成為 queue.put('蘋果',timeout=1)如果等待1秒鍾仍然是滿的就會拋出異常,可以捕獲異常。

同理如果隊列是空的,無法獲取到內容默認也會阻塞,如果不阻塞可以使用queue.get_nowait()。

在掌握了 Queue 阻塞隊列的特性之後,在下面程序中就可以利用 Queue 來實現線程通信了。

下面演示一個生產者和一個消費者,當然都可以多個

使用queue模塊,可在線程間進行通信,並保證了線程安全。

協程

協程,又稱微線程,纖程。英文名Coroutine。

協程是python個中另外一種實現多任務的方式,只不過比線程更小佔用更小執行單元(理解為需要的資源)。為啥說它是一個執行單元,因為它自帶CPU上下文。這樣只要在合適的時機, 我們可以把一個協程 切換到另一個協程。只要這個過程中保存或恢復 CPU上下文那麼程序還是可以運行的。

通俗的理解:在一個線程中的某個函數,可以在任何地方保存當前函數的一些臨時變數等信息,然後切換到另外一個函數中執行,注意不是通過調用函數的方式做到的,並且切換的次數以及什麼時候再切換到原來的函數都由開發者自己確定。

在實現多任務時,線程切換從系統層面遠不止保存和恢復 CPU上下文這么簡單。操作系統為了程序運行的高效性每個線程都有自己緩存Cache等等數據,操作系統還會幫你做這些數據的恢復操作。所以線程的切換非常耗性能。但是協程的切換只是單純的操作CPU的上下文,所以一秒鍾切換個上百萬次系統都抗的住。

greenlet與gevent

為了更好使用協程來完成多任務,除了使用原生的yield完成模擬協程的工作,其實python還有的greenlet模塊和gevent模塊,使實現協程變的更加簡單高效。

greenlet雖說實現了協程,但需要我們手工切換,太麻煩了,gevent是比greenlet更強大的並且能夠自動切換任務的模塊。

其原理是當一個greenlet遇到IO(指的是input output 輸入輸出,比如網路、文件操作等)操作時,比如訪問網路,就自動切換到其他的greenlet,等到IO操作完成,再在適當的時候切換回來繼續執行。

模擬耗時操作:

如果有耗時操作也可以換成,gevent中自己實現的模塊,這時候就需要打補丁了。

使用協程完成一個簡單的二手房信息的爬蟲代碼吧!

以下文章來源於Python專欄 ,作者宋宋

文章鏈接:https://mp.weixin.qq.com/s/2r3_ipU3HjdA5VnqSHjUnQ

熱點內容
安卓什麼軟體測試手機電池 發布:2025-02-02 04:28:52 瀏覽:989
手機上傳快 發布:2025-02-02 04:27:46 瀏覽:303
電腦配置詳解圖解都有哪些 發布:2025-02-02 04:26:27 瀏覽:711
景區應該有什麼配置 發布:2025-02-02 04:09:08 瀏覽:116
c語言與java工作 發布:2025-02-02 03:59:57 瀏覽:280
qq買什麼不要支付密碼 發布:2025-02-02 03:50:29 瀏覽:493
android讀取視頻 發布:2025-02-02 03:46:57 瀏覽:824
手機號序列碼的密碼在哪裡 發布:2025-02-02 03:29:34 瀏覽:876
安卓怎麼換回鴻蒙系統 發布:2025-02-02 03:24:35 瀏覽:511
完美國際鄰水鎮箱子密碼是多少 發布:2025-02-02 03:17:04 瀏覽:623