當前位置:首頁 » 編程語言 » python圖片二值化

python圖片二值化

發布時間: 2023-09-16 21:20:45

A. 怎樣使用python圖像處理

Python圖像處理是一種簡單易學,功能強大的解釋型編程語言,它有簡潔明了的語法,高效率的高層數據結構,能夠簡單而有效地實現面向對象編程,下文進行對Python圖像處理進行說明。
當然,首先要感謝「戀花蝶」,是他的文章「用Python圖像處理 」 幫我堅定了用Python和PIL解決問題的想法,對於PIL的一些介紹和基本操作,可以看看這篇文章。我這里主要是介紹點我在使用過程中的經驗。
PIL可以對圖像的顏色進行轉換,並支持諸如24位彩色、8位灰度圖和二值圖等模式,簡單的轉換可以通過Image.convert(mode)函數完 成,其中mode表示輸出的顏色模式。例如''L''表示灰度,''1''表示二值圖模式等。
但是利用convert函數將灰度圖轉換為二值圖時,是採用固定的閾 值127來實現的,即灰度高於127的像素值為1,而灰度低於127的像素值為0。為了能夠通過自定義的閾值實現灰度圖到二值圖的轉換,就要用到 Image.point函數。
深度剖析Python語法功能
深度說明Python應用程序特點
對Python資料庫進行學習研究
Python開發人員對Python經驗之談
對Python動態類型語言解析

Image.point函數有多種形式,這里只討論Image.point(table, mode),利用該函數可以通過查表的方式實現像素顏色的模式轉換。其中table為顏色轉換過程中的映射表,每個顏色通道應當有256個元素,而 mode表示所輸出的顏色模式,同樣的,''L''表示灰度,''1''表示二值圖模式。
可見,轉換過程的關鍵在於設計映射表,如果只是需要一個簡單的箝位值,可以將table中高於或低於箝位值的元素分別設為1與0。當然,由於這里的table並沒有什麼特殊要求,所以可以通過對元素的特殊設定實現(0, 255)范圍內,任意需要的一對一映射關系。
示例代碼如下:
import Image # load a color image im = Image.open(''fun.jpg'') # convert to grey level image Lim = im.convert(''L'') Lim.save(''fun_Level.jpg'') # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ''1'') bim.save(''fun_binary.jpg'')

IT部分通常要完成的任務相當繁重但支撐這些工作的資源卻很少,這已經成為公開的秘密。任何承諾提高編碼效率、降低軟體總成本的IT解決方案都應該進行 周到的考慮。Python圖像處理所具有的一個顯著優勢就是可以在企業的軟體創建和維護階段節約大量資金,而這兩個階段的軟體成本佔到了軟體整個生命周期中總成本 的50%到95%。
Python清晰可讀的語法使得軟體代碼具有異乎尋常的易讀性,甚至對那些不是最初接觸和開發原始項目的程序員都 能具有這樣的強烈感覺。雖然某些程序員反對在Python代碼中大量使用空格。
不過,幾乎人人都承認Python圖像處理的可讀性遠勝於C或者Java,後兩 者都採用了專門的字元標記代碼塊結構、循環、函數以及其他編程結構的開始和結束。提倡Python的人還宣稱,採用這些字元可能會產生顯著的編程風格差 異,使得那些負責維護代碼的人遭遇代碼可讀性方面的困難。轉載

B. python如何識別驗證碼

我們首先識別最簡單的一種驗證碼,即圖形驗證碼。這種驗證碼最早出現,現在也很常見,一般由4位字母或者數字組成。例如,中國知網的注冊頁面有類似的驗證碼,頁面如下所示:

表單中最後一項就是圖形驗證碼,我們必須完全正確輸入圖中的字元才可以完成注冊。

更多有關驗證碼的知識,可以參考這些文章:

Python3爬蟲進階:識別圖形驗證碼

Python3爬蟲進階:識別極驗滑動驗證碼

Python3爬蟲進階:識別點觸點選驗證碼

Python3爬蟲進階:識別微博宮格驗證碼

·本節目標以知網的驗證碼為例,講解利用OCR技術識別圖形驗證碼的方法。

·准備工作識別圖形驗證碼需要庫tesserocr,以mac安裝為例:在mac下,我們首先使用Homebrew安裝ImageMagick和tesseract庫: brew install imagemagickbrew install tesseract 接下來再安裝tesserocr即可:pip3 install tesserocr pillow這樣我們就完成了 tesserocr的安裝。

·獲取驗證碼為了便於實驗,我們先將驗證碼的圖片保存到本地。打開開發者工具,找到驗證碼元素。驗證碼元素是一張圖片,它的ser屬 性是CheckCode.aspk。所以我們直接打開如下鏈接就可以看到一個驗證碼,右鍵保存即可,將其命名為code.jpg:

這樣我們就得到一張驗證碼圖片,以供測試識別使用。

相關推薦:《Python教程》

識別測試

接下來新建一個項目,將驗證碼圖片放到項目根目錄下,用tesserocr庫識別該驗證碼,代碼如下所示:

這里我們新建了一個Image對戲那個,調用了tesserocr的image_to_text( )方法。傳入該Image對象即可完成識別,實現過程非常簡單,結果如下:

我們可以看到,識別的結果和實際結果有偏差,這是因為驗證碼內的多餘線條干擾了圖片的識別。

另外,tesserocr還有一個更加簡單的方法,這個方法可以直接將圖片文件轉為字元串,代碼如下:

不過這種方法的識別效果不如上一種的好。

驗證碼處理

對於上面的圖片,我們可以看到其實並沒有完全識別正確,所以我們需要對圖像作進一步的處理,如灰度轉換、二值化等操作。

我們可以利用Image對象的convert( )方法參數傳入L,即可將圖片轉化為灰度圖像,代碼如下:

傳入1即可將圖片進行二值化處理,如下所示:

我們還可以指定二值化的閾值。上面的方法採用的是默認閾值127。不過我們不能直接轉化原圖,要將原圖先轉化為灰度圖像,然後再指定二值化閾值,代碼如下:

在這里,變數threshold代表二值化閾值,閾值設置為160,之後我們來看看我們的結果:

我們可以看到現在的二維碼就比較方便我們進行識別了;那麼對於一些有干擾的圖片,我們做一些灰度和二值化處理,這會提高圖片識別的正確率。

C. python如何刪除二值化圖片中小塊白色區域

如果確定是純白的話你就把rgb都小於某個極小常數的像素點的alpha設成0就好了你說的nodata應該就是透明的意思!

D. python pil 怎麼去掉驗證碼線條

一、驗證碼識別的概念

機器識別圖片主要的三個步驟為消去背景、切割字元、識別字元。而現有的字元驗證碼也針對這三個方面來設計強壯的驗證碼。

以下簡圖幫助大家理解驗證碼識別的流程:

二、處理流程

其中最為關鍵的就是好圖像處理這一步了。圖像處理功能模塊包括圖像的灰度化、二值化、離散雜訊點的去除、傾斜度校正、字元的切割、圖像的歸一化等圖像處理技術 。

1、 圖像的灰度化
由於 256 色的點陣圖的調色板內容比較復雜,使得圖像處理的許多演算法都沒有辦法展開,因此有必要對它進行灰度處理。所謂灰度圖像就是圖像的每一個像素的 R、G、B 分量的值是相等的。彩色圖像的每個像素的 R、G、B 值是不相同的,所以顯示出紅綠藍等各種顏色。灰度圖像沒有這些顏色差異,有的只是亮度上的不同。灰度值大的像素點比較亮(像素值最大為 255,為白色),反之比較暗(像素值最小為 0,為黑色)。圖像灰度化有各種不同的演算法,比較直接的一種就是給像素的 RGB 值各自一個加權系數,然後求和;同時還要對調色板表項進行相應的處理。

2、 圖像的二值化
要注意的是,最後得到的結果一定要歸一到 0-255 之內。因為這是每個位元組表示
圖像數據的極限。

3、 去噪
圖像可能在生成、傳輸或者採集過程中夾帶了雜訊,去雜訊是圖像處理中常用的手法。通常去雜訊用濾波的方法,比如中值濾波、均值濾波。但是那樣的演算法不適合用在處理字元這樣目標狹長的圖像中,因為在濾波的過程中很有可能會去掉字元本身的像素。

一個採用的是去除雜點的方法來進行去雜訊處理的。具體演算法如下:掃描整個圖像,當發現一個黑色點的時候,就考察和該黑色點間接或者直接相連接的黑色點的個數有多少,如果大於一定的值,那就說明該點不是離散點,否則就是離散點,把它去掉。在考察相連的黑色點的時候用的是遞歸的方法。此處,我簡單的用python實現了,大家可以參考以下。

#coding=utf-8"""
creat time:2015.09.14
"""import cv2import numpy as npfrom matplotlib import pyplot as pltfrom PIL import Image,ImageEnhance,ImageFilter

img_name = '2+.png'#去除干擾線im = Image.open(img_name)#圖像二值化enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
data = im.getdata()
w,h = im.size#im.show()black_point = 0for x in xrange(1,w-1): for y in xrange(1,h-1):
mid_pixel = data[w*y+x] #中央像素點像素值
if mid_pixel == 0: #找出上下左右四個方向像素點像素值
top_pixel = data[w*(y-1)+x]
left_pixel = data[w*y+(x-1)]
down_pixel = data[w*(y+1)+x]
right_pixel = data[w*y+(x+1)] #判斷上下左右的黑色像素點總個數
if top_pixel == 0:
black_point += 1
if left_pixel == 0:
black_point += 1
if down_pixel == 0:
black_point += 1
if right_pixel == 0:
black_point += 1
if black_point >= 3:
im.putpixel((x,y),0) #print black_point
black_point = 0im.show()041424344

原驗證碼:

4、分割
圖像中一般會含有多個數字,識別的時候只能根據每個字元的特徵來進行判斷,所以還要進行字元切割的工作。這一步工作就是把圖像中的字元獨立的切割出來。

具體的演算法如下:

第一步,先自下而上對圖像進行逐行掃描直至遇到第一個黑色的像素點。記錄下來。然後再自上而下對圖像進行逐行掃描直至找到第一個黑色像素,這樣就找到圖像大致的高度范圍。

第二步,在這個高度范圍之內再自左向右逐列進行掃描,遇到第一個黑色像素時認為是字元切割的起始位置,然後繼續掃描,直至遇到有一列中沒有黑色像素,則認為這個字元切割結束,然後繼續掃描,按照上述的方法一直掃描直至圖像的最右端。這樣就得到了每個字元的比較精確寬度范圍。

第三步,在已知的每個字元比較精確的寬度范圍內,按照第一步的方法,分別進行自上而下和自下而上的逐行掃描來獲取每個字元精確的高度范圍。

5、 圖像的歸一化
因為採集的圖像中字元大小有可能存在較大的差異,或者是經過切割後的字元尺寸不統一,而相對來說,統一尺寸的字元識別的標准性更強,准確率自然也更高,歸一化圖像就是要把原來各不相同的字元統一到同一尺寸,在系統實現中是統一到同一高度,然後根據高度來調整字元的寬度。具體演算法如下:先得到原來字元的高度,跟系統要求的高度做比較,得出要變換的系數,然後根據得到的系數求得變換後應有得寬度。在得到寬度和高度之後,把新圖像裡面的點按照插值的方法映射到原圖像中。

不少人認為把每個字元圖像歸一化為 5×9 像素的二值圖像是最理想的,因為圖像的尺寸越小,識別速度就越高,網路訓練也越快。而實際上,相對於要識別的字元圖像, 5×9 像素圖太小了。歸一化後,圖像信息丟失了很多,這時進行圖像識別,准確率不高。實驗證明,將字元圖像歸一化為 10×18 像素的二值圖像是現實中是比較理想的,達到了識別速度快和識別准確率高的較好的平衡點。

三、識別

圖像識別包括特徵提取、樣本訓練和識別三大塊內容。

驗證碼識別其中最為關鍵的就是去噪和分割,這對你的訓練和識別的精度都有著很大的影響。這里只講了大致的流程,其中每個細節都有很多工作要做,這里碼字也很難講清楚,大家可以以這個流程為主線,一步步的實現,最終也就能完成你的需求。

E. python圖像處理代碼,望大神詳細解釋。越詳細越好

#初始化一個矩形np.max(marks)+1行,3列,默認值為0
colorTab=np.zeros((np.max(marks)+1,3))

#遍歷數組,給每行的3列賦值,就是RGB顏色值,8位的
foriinrange(len(colorTab)):
aa=np.random.uniform(0,255)
bb=np.random.uniform(0,255)
cc=np.random.uniform(0,255)
colorTab[i]=np.array([aa,bb,cc],np.uint8)

#初始化另一個跟img圖像形狀大小一樣的圖像,一副黑色圖像
bgrImage=np.zeros(img.shape,np.uint8)

#遍歷marks形狀的行列
foriinrange(marks.shape[0]):
forjinrange(marks.shape[1]):

index=marks[i][j]
#判斷是不是區域與區域之間的分界,如果是邊界(-1),則使用白色顯示
ifindex==-1:
bgrImage[i][j]=np.array([255,255,255])#像素點設置位白色
else:
bgrImage[i][j]=colorTab[index]#像素點設置位上邊隨機生成的顏色值

#顯示處理後的圖像圖像
cv2.imshow('AfterColorFill',bgrImage)
#總結,先生成一個跟marks相同數量的row*col的一張顏色表,然後創建一個跟marks相同大小的一副黑色圖像
#最後對黑色圖像畫出白色邊界和內部隨機彩色像素值

F. python opencv身份證灰度圖二值化應該怎麼處理

身份證號所在的位置在身份證上是固定的,只要你原始圖像的大體樣式變化不大,你只需要設置一個大概的坐標然後取矩形區域即可,處理的話不用單獨切割出來,直接將該區域設置為 ROI 然後處理就行了。

G. python怎麼用PIL模塊處理BMP圖像 二值化

Pillow 提供了一個 .load() 方法,用來處理像素。圖片嘛,當然是二維的,有寬和高的。

pixels = image.load()
for x in ramge(image.width):
for y in range(image.height):
pixsels[x, y] = 255 if pixsels[x, y] > 125 else 0

當然了,只是最簡單的二值化的話,直接 image.convert('1') 就可以了 :-)

熱點內容
滑板鞋腳本視頻 發布:2025-02-02 09:48:54 瀏覽:425
群暉怎麼玩安卓模擬器 發布:2025-02-02 09:45:23 瀏覽:550
三星安卓12彩蛋怎麼玩 發布:2025-02-02 09:44:39 瀏覽:736
電腦顯示連接伺服器錯誤 發布:2025-02-02 09:24:10 瀏覽:530
瑞芯微開發板編譯 發布:2025-02-02 09:22:54 瀏覽:140
linux虛擬機用gcc編譯時顯示錯誤 發布:2025-02-02 09:14:01 瀏覽:227
java駝峰 發布:2025-02-02 09:13:26 瀏覽:645
魔獸腳本怎麼用 發布:2025-02-02 09:10:28 瀏覽:527
linuxadobe 發布:2025-02-02 09:09:43 瀏覽:206
sql2000資料庫連接 發布:2025-02-02 09:09:43 瀏覽:721