python的哲學
⑴ python 在編程語言中是什麼地位為什麼很多大學不教 Python
python既可用於前端還可用於後端開發。
Python是一種計算機程序設計語言。是一種動態的、面向對象的腳本語言,最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。
Python在設計上堅持了清晰劃一的風格,這使得Python成為一門易讀、易維護,並且被大量用戶所歡迎的、用途廣泛的語言。
設計者開發時總的指導思想是,對於一個特定的問題,只要有一種最好的方法來解決就好了。
這在由Tim Peters寫的Python格言(稱為The Zen of Python)裡面表述為:There should be one-- and preferably only one --obvious way to do it。
這正好和Perl語言(另一種功能類似的高級動態語言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。
(1)python的哲學擴展閱讀:
Python的設計定位:
Python的設計哲學是「優雅」、「明確」、「簡單」。因此,Perl語言中「總是有多種方法來做同一件事」的理念在Python開發者中通常是難以忍受的。
Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」。在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕花俏的語法,而選擇明確的沒有或者很少有歧義的語法。
由於這種設計觀念的差異,Python源代碼通常被認為比Perl具備更好的可讀性,並且能夠支撐大規模的軟體開發。這些准則被稱為Python格言。在Python解釋器內運行import this可以獲得完整的列表。
Python開發人員盡量避開不成熟或者不重要的優化。一些針對非重要部位的加快運行速度的補丁通常不會被合並到Python內。
所以很多人認為Python很慢。不過,根據二八定律,大多數程序對速度要求不高。在某些對運行速度要求很高的情況,Python設計師傾向於使用JIT技術,或者用使用C/C++語言改寫這部分程序。可用的JIT技術是PyPy。
Python是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。
Python支持重載運算符和動態類型。相對於Lisp這種傳統的函數式編程語言,Python對函數式設計只提供了有限的支持。有兩個標准庫(functools, itertools)提供了Haskell和Standard ML中久經考驗的函數式程序設計工具。
雖然Python可能被粗略地分類為「腳本語言」(script language),但實際上一些大規模軟體開發計劃例如Zope、Mnet及BitTorrent,Google也廣泛地使用它。
Python的支持者較喜歡稱它為一種高級動態編程語言,原因是「腳本語言」泛指僅作簡單程序設計任務的語言,如shellscript、VBScript等只能處理簡單任務的編程語言,並不能與Python相提並論。
參考資料來源:搜狗網路-Python
⑵ python是什麼意思
python本意是:巨蛇,大蟒;Python是一種跨平台的計算機程序設計語言。
python是一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言。最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越多被用於獨立的、大型項目的開發。
Python的創始人為荷蘭人吉多·范羅蘇姆(Guido van Rossum)。1989年聖誕節期間,在阿姆斯特丹,Guido為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,作為ABC 語言的一種繼承。
之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是取自英國20世紀70年代首播的電視喜劇《蒙提.派森的飛行馬戲團》(Monty Python's Flying Circus)。
(2)python的哲學擴展閱讀:
Python的設計哲學是「優雅」、「明確」、「簡單」。因此,Perl語言中「總是有多種方法來做同一件事」的理念在Python開發者中通常是難以忍受的。
Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」。在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕花俏的語法,而選擇明確的沒有或者很少有歧義的語法。
由於這種設計觀念的差異,Python源代碼通常被認為比Perl具備更好的可讀性,並且能夠支撐大規模的軟體開發。這些准則被稱為Python格言。在Python解釋器內運行import this可以獲得完整的列表。
⑶ python3.6與3.9有什麼區別
python3.9相對於3.6更新了一些新的功能,比如字典更新和合並,基於PEG的高性能解析器,3.9提議用高性能和穩定的基於PEG的解析器替換當前基於LL(1)的Python解析器。
相關內容
Python的設計哲學是「優雅」、「明確」、「簡單」。因此,Perl語言中「總是有多種方法來做同一件事」的理念在Python開發者中通常是難以忍受的。Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」。
在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕花俏的語法,而選擇明確的沒有或者很少有歧義的語法。由於這種設計觀念的差異,Python源代碼通常被認為比Perl具備更好的可讀性,並且能夠支撐大規模的軟體開發。這些准則被稱為Python格言。在Python解釋器內運行import this可以獲得完整的列表。
⑷ 聊聊Python異常處理的哲學,懂了以後豁然開朗
看下面的兩個例子,它們的作用是完全一樣的,非常簡單,給除數和被除數,計算除法的結果。
這可能是世界上最沒用的函數之一,但重點不在這里。重點在於下面的問題:
繼續看之前,先考慮一下。給出自己的答案。
Python大師們一般會 「推薦第一種」 使用異常的寫法。理由如下:
異常處理的代碼是只有發生了異常才會去執行。既然絕大部分情況下不會發生異常,那就沒必每次都做事前判斷,這樣會很浪費CPU的運算力。假設100次調用,只有1次有問題,卻要做100次if判斷,不浪費嗎?
反過來使用異常的方法,只有 出現 了異常才去做處理,那麼except語句只會執行一次。
通過這個對比,我們也可以看到:
試想一下,如果我們可以取消做飛機時候的各種事前檢查,是不是可以大大提高效率呢?
現實生活中,我們不能取消這種檢查。但在程序中,我們可以,因為我們可以用異常捕捉。
現在給大家推薦兩條Python異常處理的哲學:
⑸ 轉行零基礎該如何學Python
對於python的入門
首先會學習python基礎語法,面向對象編程與程序設計模式的理解、python數據分析基礎、python網路編程、python並發與高效編程等等。
通過前期python學習來了解和掌握常量變數的使用,運算符的使用、流程式控制制的使用等,最後掌握python編程語言的基礎內容。
並會對常見數據結構和相應演算法進行學習,注重表格的處理,樹結構的處理知識。
第二階段主要學習內容是web頁面開發、web頁面特效開發、數據持久化開發、linux運維開發、linux測試開發、伺服器集群架構等等。
對js的掌握並在網路前端中使用,而且需要詳細將js學習並掌握,為將來從事全棧工作打下基礎,也會學習linux操作系統的基礎知識和掌握linux操作系統常用命令,並會學習linux自動化運維技巧等。
第三階段主要學習網路爬蟲,數據分析加人工智慧:
這一個階段需要學習的內容也是比較多的,例如:爬蟲與數據、多線程爬蟲、go語言、NoSQL資料庫、Scrapy-Redis框架。
需要掌握爬蟲的工作原理和設計思想,掌握反爬蟲機制,並且通過學習NoSQL資料庫和Scrapy-Redis框架,並且可以使用分布式爬蟲框架實現大量數據的獲取。
數據分析和人工智慧階段需要學習的數據分析、人工智慧深度學習、量化交易模型、數據分析-特徵工程和結果可視化和人工智慧機器學習等等。
需要理解隨機變數的數字特徵的概念和性質,並會利用性質計算隨機變數的數字特徵,了解可視化過程,圖形繪制。並且需要掌握Matplotlib模塊、常用的機器學習演算法等等。
最後就是對於python的入門學習,我們在學習理論、學習python語法基礎的同時我們應該多動手、多聯系。但是呢,對於我們零基礎的小夥伴呢,一般不建議自學。
你肯定要問為什麼?我就知道!原因大概有三點:
首先我們自學雖然成本低、學習時間靈活等,但是你想過沒,你要自學到就業的程度大概需要多長時間,辭職在家學習,或者買個網課,每天聽課、練,你可能需要1年左右,就這你還不一定能夠學會、換不一定能夠全面掌握企業需要的技術;然後報班學習的學員都已經學完工作半年了。
其次就是學習知識的系統性、前沿性。IT行業的學習一定要系統,不能說我們這里一點那裡學一點,完了全是一片一片的知識點,聽起來你都有涉及但是真正做項目反而使用不起來,很耽誤時間。其次就是前沿性,學習時一定要選擇最新的課程大綱、最新的課程。IT行業的技術更新很快。
最後就是就業服務和保障,我們選擇報班學習一般都有就業服務,當然我們在學習完也會進行模擬面試和簡歷指導的等工作。其次就是服務,一般培訓機構都有合作企業來招聘,大大增加了我們的就業機會。
總而言之你是零基礎選擇培訓絕對是最快速的轉行入門途徑!