aipython
⑴ 為什麼做AI的都選python
相對於其他語言:
1、更加人性化的設計
Python的設計更加人性化,具有快速、堅固、可移植性、可擴展性的特點,十分適合人工智慧;開源免費,而且學習簡單,很容易實現普及;內置強大的庫,可以輕松實現更大強大的功能。
2、總體的AI庫
AIMA:Python實現了從Russell到Norvigs的「人工智慧:一種現代的方法」的演算法;
pyDatalog:Python中的邏輯編程引擎;
SimpleAI:Python實現在「人工智慧:一種現代的方法」這本書中描述過的人工智慧的演算法,它專注於提供一個易於使用,有良好文檔和測試的庫;
EasyAI:一個雙人AI游戲的python引擎。
3、機器學習庫
PyBrain 一個靈活,簡單而有效的針對機器學習任務的演算法,它是模塊化的Python機器學習庫,它也提供了多種預定義好的環境來測試和比較你的演算法;
PyML 一個用Python寫的雙邊框架,重點研究SVM和其他內核方法,它支持Linux和Mac OS X;
scikit-learn旨在提供簡單而強大的解決方案,可以在不同的上下文中重用:機器學習作為科學和工程的一個多功能工具,它是python的一個模塊,集成了經典的機器學習的演算法,這些演算法是和python科學包緊密聯系在一起的;
MDP-Toolkit這是一個Python數據處理的框架,可以很容易的進行擴展。它海收集了有監管和沒有監管的學習算飯和其他數據處理單元,可以組合成數據處理序列或者更復雜的前饋網路結構。新演算法的實現是簡單和直觀的。可用的演算法是在不斷的穩定增加的,包括信號處理方法,流型學習方法,集中分類,概率方法,數據預處理方法等等。
4、自然語言和文本處理庫
NLTK開源的Python模塊,語言學數據和文檔,用來研究和開發自然語言處理和文本分析,有windows、Mac OSX和Linux版本。
Python具有豐富而強大的庫,能夠將其他語言製作的各種模塊很輕松的聯結在一起,因此,Python編程對人工智慧是一門非常有用的語言。可以說人工智慧和Python是緊密相連的。如果你想要抓住人工智慧的風口,Python是必不可少的助力。
人工智慧上使用Python比其他編程語言的好處
1、優質的文檔
2、平台無關,可以在現在每一個*nix版本上使用
3、和其他面向對象編程語言比學習更加簡單快速
4、Python有許多圖像加強庫像Python Imaging Libary,VTK和Maya 3D可視化工具包,Numeric Python, Scientific Python和其他很多可用工具可以於數值和科學應用。
5、Python的設計非常好,快速,堅固,可移植,可擴展。很明顯這些對於人工智慧應用來說都是非常重要的因素。
6、對於科學用途的廣泛編程任務都很有用,無論從小的shell腳本還是整個網站應用。
7、它是開源的。可以得到相同的社區支持。
AI的Python庫
一、總體的AI庫
AIMA:Python實現了從Russell到Norvigs的「人工智慧:一種現代的方法」的演算法
pyDatalog:Python中的邏輯編程引擎
SimpleAI:Python實現在「人工智慧:一種現代的方法」這本書中描述過的人工智慧的演算法。它專注於提供一個易於使用,有良好文檔和測試的庫。
EasyAI:一個雙人AI游戲的python引擎(負極大值,置換表、游戲解決)
二、機器學習庫
PyBrain 一個靈活,簡單而有效的針對機器學習任務的演算法,它是模塊化的Python機器學習庫。它也提供了多種預定義好的環境來測試和比較你的演算法。
PyML 一個用Python寫的雙邊框架,重點研究SVM和其他內核方法。它支持Linux和Mac OS X。
scikit-learn 旨在提供簡單而強大的解決方案,可以在不同的上下文中重用:機器學習作為科學和工程的一個多功能工具。它是python的一個模塊,集成了經典的機器學習的演算法,這些演算法是和python科學包(numpy,scipy.matplotlib)緊密聯系在一起的。
MDP-Toolkit 這是一個Python數據處理的框架,可以很容易的進行擴展。它海收集了有監管和沒有監管的學習算飯和其他數據處理單元,可以組合成數據處理序列或者更復雜的前饋網路結構。新演算法的實現是簡單和直觀的。可用的演算法是在不斷的穩定增加的,包括信號處理方法(主成分分析、獨立成分分析、慢特徵分析),流型學習方法(局部線性嵌入),集中分類,概率方法(因子分析,RBM),數據預處理方法等等。
⑵ 為何人工智慧(AI)首選Python
1、為什麼人工智慧(AI)首選Python?
讀完這篇文章你就知道了。咱們看谷歌的TensorFlow基本上全部的代碼都是C++和Python,其餘語言通常只有幾千行 。若是講運行速度的部分,用C++,若是講開發效率,用Python,誰會用Java這種高不成低不就的語言搞人工智慧呢?python
Python雖然是腳本語言,可是由於容易學,迅速成為科學家的工具(MATLAB也能搞科學計算,可是軟體要錢,且很貴),從而積累了大量的工具庫、架構,人工智慧涉及大量的數據計算,用Python是很天然的,簡單高效。程序員
Python有很是多優秀的深度學習庫可用,如今大部分深度學習框架都支持Python,不用Python用誰?人生苦短,就用Python。
學習python過程當中有不懂的能夠加入個人python零基礎系統學習交流秋秋qun:前面是934,中間109,後面是170,與你分享Python企業當下人才需求及怎麼從零基礎學習Python,和學習什麼內容。相關學習視頻資料、開發工具都有分享!網路
2、Python現狀與發展趨勢
python如今的確已經很火了,這已經是一個不須要爭論的問題。若是說三年前,Matlab、Scala、R、Java 和 還各有機會,局面尚且不清楚,那麼三年以後,趨勢已經很是明確了,特別是前兩天 Facebook 開源了 PyTorch 以後,Python 做為 AI 時代頭牌語言的位置基本確立,將來的懸念僅僅是誰能坐穩第二把交椅。
Python 已是數據分析和 AI的第一語言,網路攻防的第一黑客語言,正在成為編程入門教學的第一語言,雲計算系統管理第一語言。框架
Python 也早就成為Web 開發、游戲腳本、計算機視覺、物聯網管理和機器人開發的主流語言之一,隨著 Python 用戶能夠預期的增加,它還有機會在多個領域里登頂。編程語言
3、Python與人工智慧
若是要從科技領域找出最大的變化和革新,那麼咱們很難不說到「人工智慧」這個關鍵詞。人工智慧催生了大量新技術、新企業和新業態,為我的、企業、國家乃至全球提供了新的經濟增加點,上到谷歌、蘋果、網路等巨頭,下到各種創業公司,人工智慧已成為一個現象級的風口。短短幾年時間,圖片自動歸類、人臉識別已經成為很是通用的功能,天然語言做為一種交互方式正在被各類語音助理普遍運用,無人車駕駛日新月異,AlphaGo打敗圍棋冠軍,仿生機器人的技術迭代,將來幾十年的城市交通和人類的生活方式都將會被人工智慧所改變。工具
Python做為人工智慧首選編程語言,隨著人工智慧時代的到來,Python開發效率很是高,Python有很是強大的第三方庫,基本上你想經過計算機實現任何功能,Python官方庫里都有相應的模塊進行支持,直接下載調用後,在基礎庫的基礎上再進行開發,大大下降開發周期,避免重復造輪子,還有python的是可移植性、可擴展性、可嵌入性、少許代碼能夠作不少事,這就是為什麼人工智慧(AI)首選Python。學習
⑶ 人工智慧和python有什麼關系
提到人工智慧就一定會提到Python,有的初學者甚至認為人工智慧和Python是劃等號的,其實Python是一種計算機程序設計語言。是一種動態的、面向對象的腳本語言,開始時是用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。而人工智慧通俗講就是人為的通過嵌入式技術把程序寫入機器中使其實現智能化。顯然人工智慧和Python是兩個不同的概念。人工智慧和Python的淵源在於。就像我們統計數據或選擇用excel製作表格時,因為在需要用到加減乘除或者、函數等時,只需要套用公司就可以。因為SUM、AVERAGE等這樣的函數運行的背後,是C++/C#等語言已經編寫好了代碼,所以Excel只是工具和展現形式並不是它做計算。同理在學習人工智慧時Python只是用來操作深度學習框架的工具,實際負責運算的主要模塊並不依靠Python,真正起作用的是也是一大堆復雜的C++
/ CUDA程序。
深度學習人工智慧時,自己計算太復雜,還要寫C++代碼操作,這時程序員就想要不搞一套類似復雜的Excel配置表,直接搭建神經網路、填參數、導入數據,一點按鈕就直接開始訓練模型、得出結果。這個方法簡單實用可是神經網路搭建起來太復雜,需要填寫的參數太多,各種五花八門的選項也很難做成直觀的圖形工具。只能用一個類似Python的相對好用的語言,通過簡化的程序代碼來搭建神經網路、填寫參數、導入數據,並調用執行函數進行訓練。通過這種語言來描述模型、傳遞參數、轉換好輸入數據,然後扔到復雜的深度學習框架裡面去計算。那麼為什麼會選擇Python?科學家們很早就喜歡用Python實驗演算法,也善於使用numpy做科學計算,用pyplot畫數據圖。恰好Google內部用Python也非常多,所以採用Python也是必然的。除Python外,實際上TensorFlow框架還支持JavaScript、c++、Java、GO、等語言。按說人工智慧演算法用這些也可以。但是官方說了,除Python之外的語言不一定承諾API穩定性。所以人工智慧和Python就密不可分了。單說人工智慧的核心演算法,那是是完全依賴於C/C++的,因為是計算密集型,需要非常精細的優化,還需要GPU、專用硬體之類的介面,這些都只有C/C++能做到。所以某種意義上其實C/C++才是人工智慧領域最重要的語言。Python是這些庫的API
binding,要開發一個其他語言到C/C++的跨語言介面,Python是最容易的,比其他語言的ffi門檻要低不少,CPython的C
API是雙向融合的,可以直接對外暴露封裝過的Python對象,還可以允許用戶通過繼承這些自定義對象來引入新特性,甚至可以從C代碼當中再調用Python的函數。Python一直都是科學計算和數據分析的重要工具,Python是這些庫的API
binding,要開發一個其他語言到C/C++的跨語言介面,Python是最容易的,比其他語言的ffi門檻要低不少,CPython的C
API是雙向融合的,可以直接對外暴露封裝過的Python對象,還可以允許用戶通過繼承這些自定義對象來引入新特性,甚至可以從C代碼當中再調用Python的函數。都說時勢造英雄,也可以說是人工智慧和Python互相之間成就者對方,人工智慧演算法促進Python的發展,而Python也讓演算法更加簡單。
⑷ Python和人工智慧有什麼關系
Python是一種計算機程序設計語言,是一種動態的、面向對象的腳本語言,剛開始用於編寫自動化腳本,隨著版本的更新以及推進,Python可以應用在獨立、大型項目的開發工作中,而人工智慧就是人為通過嵌入式技術將程序寫入機器中讓其實現智能化狀態,所以說人工智慧和Python屬於完全不同的概念。
人工智慧與Python的關系其實很簡單,簡單的來說學習人工智慧的時候Python就是用來操作深度學習框架的工具,實際負責運算,主要的模塊並不是說完全應用Python,真正起到作用的程序有很多,需要他們共同協作的情況下才可以完成。
利用Python這門相對於好用的編程語言,通過簡單的程序就可以輕松搭建神經網路、填寫參數、導入數據等,並且調用執行函數進行連續。為什麼會選擇使用Python?
用Python實驗演算法,善於使用Python做科學運算,而且Google內部用Python也是非常多的,採用Python是非常必要的事情。同時Python可以保持API穩定性,因此Python人工智慧之間有著密不可分的關系。
⑸ 為什麼做AI的都選Python
為什麼人工智慧要用Python?總結了以下三個原因。
1、Python是解釋語言,程序寫起來非常方便
寫程序方便對做機器學習的人很重要。因為經常需要對模型進行各種各樣的修改,這在編譯語言里很可能是牽一發而動全身的事情,Python里通常可以用很少的時間實現。舉例來說,在C等編譯語言里寫一個矩陣乘法,需要自己分配操作數(矩陣)的內存、分配結果的內存、手動對BLAS介面調用gemm、最後如果沒用smart pointer還得手動回收內存空間。Python幾乎就是import numpy; numpy.dot兩句話的事。
當然現在很多面向C/C++庫已經支持託管的內存管理了,這也讓開發過程容易了很多,但解釋語言仍然有天生的優勢——不需要編譯時間。這對機器學習這種需要大量prototyping和迭代的研究方向是非常有益工作效率的。
2、Python的開發生態成熟,有很多庫可以用
Python靈活的語法還使得包括文本操作、list/dict comprehension等非常實用的功能非常容易高效實現(bbs.cnite.cn),配合lambda等使用更是方便。這也是Python良性生態背後的一大原因。
相比而言,Lua雖然也是解釋語言,甚至有LuaJIT這種神器加持,但其本身很難做到Python這樣,一是因為有Python這個前輩佔領著市場份額,另一個也因為它本身種種反常識的設計(比如全局變數)。不過借著Lua-Python bridge和Torch的東風,Lua似乎也在寄生興起。
3、Python效率超高
解釋語言的發展已經大大超過許多人的想像。很多比如list comprehension的語法糖都是貼近內核實現的。除了JIT之外,還有Cython可以大幅增加運行效率。最後,得益於Python對C的介面,很多像gnumpy,theano這樣高效、Python介面友好的庫可以加速程序的運行,在強大團隊的支撐下,這些庫的效率可能比一個不熟練的程序員用C寫一個月調優的效率還要高。
以上就是總結的人工智慧要用Python的三個原因。