python批量處理數據
『壹』 如何使用python來批量處理Excel中單元格的超鏈接
excel自帶的公式或vba比python方便的多,python也還是調用com介面使用這些屬性方法的。
同一文件內部處理,vba更方便。
大量excel文件批量處理,python方便。
你這個需求:
運行這個宏,就自動在A列生成了你要的目錄了,點目錄鏈接自動跳轉到對應的工作表。
『貳』 用python批量提取pdf的表格數據,保存為excel
pdfplumber 是一個開源 python 工具庫-,可以方便地獲取 pdf 的各種信息,包括文本、表格、圖表、尺寸等。完成我們本文的需求,主要使用 pdfplumber 提取 pdf 表格數據。
python 中還有很多庫可以處理 pdf,比如 PyPDF2、pdfminer 等,本文選擇pdfplumber 的原因在於能輕松訪問有關 PDF 的所有詳細信息,包括作者、來源、日期等,並且用於提取文本和表格的方法靈活可定製。大家可以根據手頭數據需求,再去解鎖 pdfplumber 的更多用法。
『叄』 Python數據處理:篩選、統計、連表、拼接、拆分、缺失值處理
file1_path ='E:/Users/lenovo/Desktop/中視/622召回.csv' # 源數據
格式:file1=pd.read_csv(file1_path)
pd.read_csv(file1_path,encoding='gbk')
pd.read_csv(file1_path,encoding='gbk',skiprows=[2,3])
pd.read_csv(file1_path,encoding='gbk',skiprows=lambda x:x%2==1)
pd.read_csv(file1_path,encoding='gbk',keep_default_na=False)
new=pd.DataFrame()
new.new[[0,1,2]]
new.new[0:2]
查詢結果同上
new.loc[new['激活數']>1000]
loc和iloc的區別:
loc:純標簽篩選
iloc:純數字篩選
#篩選出new的某兩列
new=new.loc[:,['phone','收件人姓名']]
#篩選new的第0,1列
new.iloc[:,[0,1]]
使用『==』篩選-篩查「崔旭」的人(只能篩查指定明確的)
#new=file1.loc[(file1['收件人姓名']=='崔旭')|(file1['收件人姓名']=='崔霞')]
#print(new)
#使用loc函數篩選-str.contains函數-篩查名字中包含'亮'和'海'的人
#new=file1.loc[file1['收件人姓名'].str.contains('亮|海')]
#print(new)
#使用loc函數篩選-str.contains函數-篩查'崔'姓的人
#new=file1.loc[file1['收件人姓名'].str.startswitch('崔')]
#print(new)
df = df[(df['DEPOSIT_PAY_TIME_x'] .notnull() ) & (df['DEPOSIT_PAY_TIME_x'] != "" )]
print("ring_time(number)=0的個數:",newdata[newdata['ring_time(number)'] ==0].count()['ring_time(number)'])
print("ring_time(number)=1,2,3的個數:",newdata[(newdata['ring_time(number)'] >0) & (newdata['ring_time(number)'] <4)].count()['ring_time(number)'])
print(newdata[newdata['ring_time(number)'] ==0])
newdata[newdata['Team']. isin (['England','Italy','Russia'])][['Team','Shooting Accuracy']]
df.年齡.value_counts()
1.修改指定位置數據的值(修改第0行,』創建訂單數『列的值為3836)
new.loc[0,'創建訂單數']=3836
2.替換『小明』-『xiaoming』
df.replace({'name':{'小明':'xiaoming'}})
3.批量替換某一列的值(把『性別』列里的男-male,女-felmale)
方法一:df['性別']=df['性別'].map({'男':'male','女':'female'})
方法二:df['性別'].replace('female','女',inplace=True)
或df['性別']=df['性別'].replace('female','女') 這就是inplace的作用
+df['性別'].replace('male','男',inplace=True)
4.替換列索引
df.columns=['sex','name','height','age']
或者:df.rename(columns={'性別':'sex','姓名':'name','身高':'height','年齡':'age'})
5.刪除某一列
del df['player']
6. 刪除某一列(方法二),刪除某一行(默認axis=0刪除行,為1則刪除列)
刪除某一列(方法二)
df.drop('性別',axis=1)
刪除某一行
df.drop(1,axis=0)
file1=pd.read_csv(file1_path)
file2=pd.read_csv(file2_path)
new1=pd.DataFrame()
new1['phone']=file1['phone']
new1['contact_time']=file1['contact_time']
new2=pd.DataFrame()
new2['phone']=file2['phone']
new2['submission_audit_time']=file2['提交審核時間']
newdata=pd.merge(new1,new2,on='phone',how='left')
df=pd.concat([df1,df2],axis=0)
4.2.2 橫向表連接
df=pd.concat([df1,df2],axis=1)
df1['地區'].str.split('·',3,expand=True)
df1:
df1[['城市', '城區','地址']] = df1['地區'].str.split('·', 3, expand = True)
5.1 缺失值刪除
data.dropna(axis=0,subset = ["Age", "Sex"]) # 丟棄『Age』和『Sex』這兩列中有缺失值的行
data.dropna(how = 'all') # 傳入這個參數後將只丟棄全為缺失值的那些行
data.dropna(axis = 1) # 丟棄有缺失值的列(一般不會這么做,這樣會刪掉一個特徵)
data.dropna(axis=1,how="all") # 丟棄全為缺失值的那些列
5.2 缺失值填充:pandas.DataFrame.fillna()函數
DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
功能:使用指定方法填充NA/NaN值
其中inplace=True就是直接在原有基礎上填滿
5.3 缺失值查詢:
缺失值數量查詢:df.isnull().sum()
缺失值行查詢:df[df.isnull().T.any()]
newdata['ring_time']=pd.to_datetime(newdata['submission_audit_time'])-pd.to_datetime(newdata['contact_time'])
newdata['ring_time(number)']=(pd.to_datetime(newdata['submission_audit_time'])-pd.to_datetime(newdata['contact_time'])).apply(lambda x: x.days)
new=pd.DataFrame()
new=newdata[newdata['ring_time(number)'] ==0]
new.to_csv(save_path,encoding='utf-8-sig')
將數據按行拆分並存儲到不同的csv文件中:
path='C:/Users/EDZ/Desktop/工作/2021.08.19/'
for i in range(0,30):
df.loc[[i]].to_csv(path+str(i)+'.csv',encoding='gbk')
df = df[['購葯日期', '星期','社保卡號','商品編碼', '商品名稱', '銷售數量', '應收金額', '實收金額' ]]
『肆』 python 編程問題,如何批量處理字元串變數
for i in range(1,100):
sub_name = str(i)
locals()[f"a_{str(i)}"] = eval(f"fname_{str(i)}") * eval(f"fname_{str(i+1)}")
『伍』 Python多線程總結
在實際處理數據時,因系統內存有限,我們不可能一次把所有數據都導出進行操作,所以需要批量導出依次操作。為了加快運行,我們會採用多線程的方法進行數據處理, 以下為我總結的多線程批量處理數據的模板:
主要分為三大部分:
共分4部分對多線程的內容進行總結。
先為大家介紹線程的相關概念:
在飛車程序中,如果沒有多線程,我們就不能一邊聽歌一邊玩飛車,聽歌與玩 游戲 不能並行;在使用多線程後,我們就可以在玩 游戲 的同時聽背景音樂。在這個例子中啟動飛車程序就是一個進程,玩 游戲 和聽音樂是兩個線程。
Python 提供了 threading 模塊來實現多線程:
因為新建線程系統需要分配資源、終止線程系統需要回收資源,所以如果可以重用線程,則可以減去新建/終止的開銷以提升性能。同時,使用線程池的語法比自己新建線程執行線程更加簡潔。
Python 為我們提供了 ThreadPoolExecutor 來實現線程池,此線程池默認子線程守護。它的適應場景為突發性大量請求或需要大量線程完成任務,但實際任務處理時間較短。
其中 max_workers 為線程池中的線程個數,常用的遍歷方法有 map 和 submit+as_completed 。根據業務場景的不同,若我們需要輸出結果按遍歷順序返回,我們就用 map 方法,若想誰先完成就返回誰,我們就用 submit+as_complete 方法。
我們把一個時間段內只允許一個線程使用的資源稱為臨界資源,對臨界資源的訪問,必須互斥的進行。互斥,也稱間接制約關系。線程互斥指當一個線程訪問某臨界資源時,另一個想要訪問該臨界資源的線程必須等待。當前訪問臨界資源的線程訪問結束,釋放該資源之後,另一個線程才能去訪問臨界資源。鎖的功能就是實現線程互斥。
我把線程互斥比作廁所包間上大號的過程,因為包間里只有一個坑,所以只允許一個人進行大號。當第一個人要上廁所時,會將門上上鎖,這時如果第二個人也想大號,那就必須等第一個人上完,將鎖解開後才能進行,在這期間第二個人就只能在門外等著。這個過程與代碼中使用鎖的原理如出一轍,這里的坑就是臨界資源。 Python 的 threading 模塊引入了鎖。 threading 模塊提供了 Lock 類,它有如下方法加鎖和釋放鎖:
我們會發現這個程序只會列印「第一道鎖」,而且程序既沒有終止,也沒有繼續運行。這是因為 Lock 鎖在同一線程內第一次加鎖之後還沒有釋放時,就進行了第二次 acquire 請求,導致無法執行 release ,所以鎖永遠無法釋放,這就是死鎖。如果我們使用 RLock 就能正常運行,不會發生死鎖的狀態。
在主線程中定義 Lock 鎖,然後上鎖,再創建一個子 線程t 運行 main 函數釋放鎖,結果正常輸出,說明主線程上的鎖,可由子線程解鎖。
如果把上面的鎖改為 RLock 則報錯。在實際中設計程序時,我們會將每個功能分別封裝成一個函數,每個函數中都可能會有臨界區域,所以就需要用到 RLock 。
一句話總結就是 Lock 不能套娃, RLock 可以套娃; Lock 可以由其他線程中的鎖進行操作, RLock 只能由本線程進行操作。