python教程知乎
㈠ 如何學習python知乎
對於Python的學習人員需要掌握以下技術。
1.網路編程。
網路編程在生活和開發中無處不在,哪裡有通訊就有網路,它可以稱為是一切開發的"基石"。對於所有編程開發人員必須要知其然並知其所以然,所以網路部分將從協議、封包、解包等底層進行深入剖析。
2. 爬蟲開發。
將網路一切數據作為資源,通過自動化程序進行有針對性的數據採集以及處理。爬蟲開發項目包含跨越防爬蟲策略、高性能非同步IO、分布式爬蟲等,並針對Scrapy框架源碼進行深入剖析,從而理解其原理並實現自定義爬蟲框架。
3.Web開發。
Web開發包含前端以及後端兩大部分,前端部分,帶你從"黑白"到"彩色"世界,手把手開發動態網頁;後端部分,帶你從10行代碼開始到n萬行來實現並使用自己的微型Web框架,框架講解中涵蓋了數據、組件、安全等多領域的知識,從底層了解其工作原理並可駕馭任何業內主流的Web框架。
4. IT自動化開發。
IT運維自動化是一組將靜態的設備結構轉化為根據IT服務需求動態彈性響應的策略,目的就是實現減少人工干預、降低人員成本以及出錯概率,真刀真槍的帶你開發企業中最常用的項目,從設計層面、框架選擇、靈活性、擴展性、故障處理、以及如何優化等多個層面接觸真實的且來源於各大互聯網公司真實案例,如:堡壘機、CMDB、全網監控、主機管理等。
5. 金融分析。
金融分析包含金融知識和Python相關模塊的學習,手把手帶你從金融小白到開發量化交易策略的大拿。學習內容囊括Numpy\Pandas\Scipy數據分析模塊等,以及常見金融分析策略如"雙均線"、"周規則交易"、"羊駝策略"、"Dual Thrust 交易策略"等,讓夢想照進現實,進入金融行業不再是個夢。
6. 人工智慧+機器學習。
人工智慧時代來臨,率先引入深度機器學習課程。其中包含機器學習的基礎概念以及常用知識,如:分類、聚類、回歸、神經網路以及常用類庫,並根據身邊事件作為案例,一步一步經過預處理、建模、訓練以及評估和參調等。人工智慧是未來科技發展的新趨勢,Python作為最主要的編程語言,勢必有很好的發展前景,現在學習Python也是一個很好的機會。
㈡ python最佳入門教程(1): python的安裝
本教程基於python3.x, 是針對初學者的一系列python入門教程,在知乎上常有人問我計算機該怎麼學,如何自學編程,筆者也是通過自學編程而進入IT這一行業的,回顧入行的這幾年,從音視頻流媒體輾轉到人工智慧深度學習,機器視覺,我是下了不少苦心的,對於如何學習有自己的一套理論和實踐方法,很多人自言學編程不得其門,把學不會歸咎於天分,其實芸芸眾生,智力無別,你現在所看到的是技術大牛們一個個超凡絕頂(然知此絕頂非彼絕頂),看不到的是曾經的他們,也在每個晝夜裡用心苦學。再者學一門技術,需要勤學刻苦,是需要講究方法和基礎的,方法對了就事半功倍,所謂的天才也無不是建立在扎實的基礎之上。
在windows中安裝python
首先打開python官網https://www.python.org/,點擊頁面downloads導航按鈕,下載windows最新的基於web安裝的安裝器,右鍵以管理員身份運行 安裝包,會出現如下界面:
將Add Python 3.7 to PATH 進行勾選,勾選此項的目的在於將python解釋器加入系統環境變數,則在後續的python開發中可直接在windows 命令行中執行python腳本。所謂的環境變數是系統運行環境的一系列參數,比如這里的系統環境變數是PATH,PATH保存了與路徑相關的參數,系統在路徑查找中,會對PATH保存的路徑進行搜索。
點擊install Now按鈕執行python的安裝
打開windows命令行界面(按windows鍵輸入cmd命令),輸入python -V,出現python版本的相關輸出,即表示安裝成功。
在Linux系統中安裝python
筆者的系統是CentOS, Linux系統默認有安裝python,但是其版本是2.x,在這里筆者以源碼安裝的形式來安裝python 3.X。首先進入python源碼包頁面 點擊下載最新的gzip格式的python源碼包,上傳到伺服器然後進行解壓,解壓後的目錄結構如下圖所示:
Linux中的configure與make
configure是Linux中的腳本配置工具,用來對源碼的當前安裝環境進行檢測,若檢測無誤,會在當前目錄生成一個供源碼編譯的Makefile腳本文件。
make是Linux系統下的編譯安裝工具,用來解釋執行makefile文件中的腳本命令,編譯命令。
現在我們開始編譯安裝python
(1) 在當前目錄執行./configure(2) 輸入 make && sudo make install
若無指定安裝目錄,python會被默認安裝在/usr/local目錄中, 讀者可以執行./configure --prefix=「你自定義的安裝目錄」來配置安裝路徑。安裝完畢以後進入/usr/local/bin目錄,輸入 「python3.x -V」 (這里的python3.x為你所安裝的python版本),若出現與python版本的相關輸出,即表示安裝成功。
為安裝的python設置軟鏈接
安裝的python可以以絕對路徑的方式來執行,每次敲一大段路徑來執行python未免麻煩,通常我們會給安裝的python設置軟鏈接,這里的軟鏈接類似於windows的快捷方式。
輸入以下命令來給python設置軟鏈接,筆者安裝的版本是python3.7, pip是python的包管理工具,會在教程的後續章節中進行詳細講解。
ln -s /usr/bin/python3 /usr/local/bin/python3.7 # 表示設置python3 為 /usr/local/bin/python3.7的快捷方式ln -s /usr/bin/pip3 /usr/local/bin/pip3.7 # 表示設置pip3 為 /usr/local/bin/pip3.7的快捷方式
㈢ Python爬取知乎與我所理解的爬蟲與反爬蟲
關於知乎驗證碼登陸的問題,用到了Python上一個重要的圖片處理庫PIL,如果不行,就把圖片存到本地,手動輸入。
通過對知乎登陸是的抓包,可以發現登陸知乎,需要post三個參數,一個是賬號,一個是密碼,一個是xrsf。
這個xrsf隱藏在表單裡面,每次登陸的時候,應該是伺服器隨機產生一個字元串。所有,要模擬登陸的時候,必須要拿到xrsf。
用chrome (或者火狐 httpfox 抓包分析)的結果:
所以,必須要拿到xsrf的數值,注意這是一個動態變化的參數,每次都不一樣。
拿到xsrf,下面就可以模擬登陸了。
使用requests庫的session對象,建立一個會話的好處是,可以把同一個用戶的不同請求聯系起來,直到會話結束都會自動處理cookies。
注意:cookies 是當前目錄的一個文件,這個文件保存了知乎的cookie,如果是第一個登陸,那麼當然是沒有這個文件的,不能通過cookie文件來登陸。必須要輸入密碼。
這是登陸的函數,通過login函數來登陸,post 自己的賬號,密碼和xrsf 到知乎登陸認證的頁面上去,然後得到cookie,將cookie保存到當前目錄下的文件裡面。下次登陸的時候,直接讀取這個cookie文件。
這是cookie文件的內容
以下是源碼:
運行結果:
https://github.com/zhaozhengcoder/Spider/tree/master/spider_hu
反爬蟲最基本的策略:
爬蟲策略:
這兩個都是在http協議的報文段的檢查,同樣爬蟲端可以很方便的設置這些欄位的值,來欺騙伺服器。
反爬蟲進階策略:
1.像知乎一樣,在登錄的表單裡面放入一個隱藏欄位,裡面會有一個隨機數,每次都不一樣,這樣除非你的爬蟲腳本能夠解析這個隨機數,否則下次爬的時候就不行了。
2.記錄訪問的ip,統計訪問次數,如果次數太高,可以認為這個ip有問題。
爬蟲進階策略:
1.像這篇文章提到的,爬蟲也可以先解析一下隱藏欄位的值,然後再進行模擬登錄。
2.爬蟲可以使用ip代理池的方式,來避免被發現。同時,也可以爬一會休息一會的方式來降低頻率。另外,伺服器根據ip訪問次數來進行反爬,再ipv6沒有全面普及的時代,這個策略會很容易造成誤傷。(這個是我個人的理解)。
通過Cookie限制進行反爬蟲:
和Headers校驗的反爬蟲機制類似,當用戶向目標網站發送請求時,會再請求數據中攜帶Cookie,網站通過校驗請求信息是否存在Cookie,以及校驗Cookie的值來判定發起訪問請求的到底是真實的用戶還是爬蟲,第一次打開網頁會生成一個隨機cookie,如果再次打開網頁這個Cookie不存在,那麼再次設置,第三次打開仍然不存在,這就非常有可能是爬蟲在工作了。
反爬蟲進進階策略:
1.數據投毒,伺服器在自己的頁面上放置很多隱藏的url,這些url存在於html文件文件裡面,但是通過css或者js使他們不會被顯示在用戶看到的頁面上面。(確保用戶點擊不到)。那麼,爬蟲在爬取網頁的時候,很用可能取訪問這個url,伺服器可以100%的認為這是爬蟲乾的,然後可以返回給他一些錯誤的數據,或者是拒絕響應。
爬蟲進進階策略:
1.各個網站雖然需要反爬蟲,但是不能夠把網路,谷歌這樣的搜索引擎的爬蟲給幹了(幹了的話,你的網站在網路都說搜不到!)。這樣爬蟲應該就可以冒充是網路的爬蟲去爬。(但是ip也許可能被識破,因為你的ip並不是網路的ip)
反爬蟲進進進階策略:
給個驗證碼,讓你輸入以後才能登錄,登錄之後,才能訪問。
爬蟲進進進階策略:
圖像識別,機器學習,識別驗證碼。不過這個應該比較難,或者說成本比較高。
參考資料:
廖雪峰的python教程
靜覓的python教程
requests庫官方文檔
segmentfault上面有一個人的關於知乎爬蟲的博客,找不到鏈接了
㈣ 有什麼比較好的python教程
一,買一本好書。
不一定非要一直遍敲代碼邊學習,個人經驗,當代碼邏輯很清晰,經過之前c語言刷題的鍛煉之後,看書學習新的編程語言效果也是非常好,狀態好的時候,半天就能學100多頁。這里推薦可以看看python丶基礎教程,笨檔缺方法學python。
二,注重實踐。
注意和第一條並閉蠢梁不沖突,多敲代碼才是王道。可以去codeforce上做題,雖然都是英文的,但是可以用python提交,此外還有計丶蒜客,pythontip。後兩者更加簡單。多多訓練,解決問題。
三,注意需求。
你學python,想用它做什麼?可以去一些項目網站,例如國內的shiyanlou,去跟著做做一個個真正的項目,還有很多書上有很多實戰項目,跟著做下來。然後,很必要的,自己在這個項目上添加上自己的一些想法,將它變成自己的項目,這一點提高非常大
四,注意網路資源。
像網路經驗一樣,也可以多逛逛知乎,CSDN,博客園,看看大牛們都是怎麼學習的,很多方法都會轎運有介紹,自己有選擇的學習。
五,記錄自己的學習
開通博客,像CSDN,博客園,或者自己搭建的博客都可以,記錄下自己的學習心得,不要怕自己的成果會被竊取,你那點知識大牛們是不屑的,一步一個腳印,在你往回看自己一篇篇博客的時候,你會發現自己已經走了很遠。
㈤ 深度學習 python怎麼入門 知乎
自學深度學習是一個漫長而艱巨的過程。您需要有很強的線性代數和微積分背景,良好的Python編程技能,並扎實掌握數據科學、機器學習和數據工程。即便如此,在你開始將深度學習應用於現實世界的問題,並有可能找到一份深度學習工程師的工作之前,你可能需要一年多的學習和實踐。然而,知道從哪裡開始,對軟化學習曲線有很大幫助。如果我必須重新學習Python的深度學習,我會從Andrew Trask寫的Grokking deep learning開始。大多數關於深度學習的書籍都要求具備機器學習概念和演算法的基本知識。除了基本的數學和編程技能之外,Trask的書不需要任何先決條件就能教你深度學習的基礎知識。這本書不會讓你成為一個深度學習的向導(它也沒有做這樣的聲明),但它會讓你走上一條道路,讓你更容易從更高級的書和課程中學習。用Python構建人工神經元
大多數深度學習書籍都是基於一些流行的Python庫,如TensorFlow、PyTorch或Keras。相比之下,《運用深度學習》(Grokking Deep Learning)通過從零開始、一行一行地構建內容來教你進行深度學習。
《運用深度學習》
你首先要開發一個人工神經元,這是深度學習的最基本元素。查斯克將帶領您了解線性變換的基本知識,這是由人工神經元完成的主要計算。然後用普通的Python代碼實現人工神經元,無需使用任何特殊的庫。
這不是進行深度學習的最有效方式,因為Python有許多庫,它們利用計算機的圖形卡和CPU的並行處理能力來加速計算。但是用普通的Python編寫一切對於學習深度學習的來龍去是非常好的。
在Grokking深度學習中,你的第一個人工神經元只接受一個輸入,將其乘以一個隨機權重,然後做出預測。然後測量預測誤差,並應用梯度下降法在正確的方向上調整神經元的權重。有了單個神經元、單個輸入和單個輸出,理解和實現這個概念變得非常容易。您將逐漸增加模型的復雜性,使用多個輸入維度、預測多個輸出、應用批處理學習、調整學習速率等等。
您將通過逐步添加和修改前面章節中編寫的Python代碼來實現每個新概念,逐步創建用於進行預測、計算錯誤、應用糾正等的函數列表。當您從標量計算轉移到向量計算時,您將從普通的Python操作轉移到Numpy,這是一個特別擅長並行計算的庫,在機器學習和深度學習社區中非常流行。
Python的深度神經網路
有了這些人造神經元的基本構造塊,你就可以開始創建深層神經網路,這基本上就是你將幾層人造神經元疊放在一起時得到的結果。
當您創建深度神經網路時,您將了解激活函數,並應用它們打破堆疊層的線性並創建分類輸出。同樣,您將在Numpy函數的幫助下自己實現所有功能。您還將學習計算梯度和傳播錯誤通過層傳播校正跨不同的神經元。
隨著您越來越熟悉深度學習的基礎知識,您將學習並實現更高級的概念。這本書的特點是一些流行的正規化技術,如早期停止和退出。您還將獲得自己版本的卷積神經網路(CNN)和循環神經網路(RNN)。
在本書結束時,您將把所有內容打包到一個完整的Python深度學習庫中,創建自己的層次結構類、激活函數和神經網路體系結構(在這一部分,您將需要面向對象的編程技能)。如果您已經使用過Keras和PyTorch等其他Python庫,那麼您會發現最終的體系結構非常熟悉。如果您沒有,您將在將來更容易地適應這些庫。
在整本書中,查斯克提醒你熟能生巧;他鼓勵你用心編寫自己的神經網路,而不是復制粘貼任何東西。
代碼庫有點麻煩
並不是所有關於Grokking深度學習的東西都是完美的。在之前的一篇文章中,我說過定義一本好書的主要內容之一就是代碼庫。在這方面,查斯克本可以做得更好。
在GitHub的Grokking深度學習庫中,每一章都有豐富的jupiter Notebook文件。jupiter Notebook是一個學習Python機器學習和深度學習的優秀工具。然而,jupiter的優勢在於將代碼分解為幾個可以獨立執行和測試的小單元。Grokking深度學習的一些筆記本是由非常大的單元格組成的,其中包含大量未注釋的代碼。
這在後面的章節中會變得尤其困難,因為代碼會變得更長更復雜,在筆記本中尋找自己的方法會變得非常乏味。作為一個原則問題,教育材料的代碼應該被分解成小單元格,並在關鍵區域包含注釋。
此外,Trask在Python 2.7中編寫了這些代碼。雖然他已經確保了代碼在Python 3中也能順暢地工作,但它包含了已經被Python開發人員棄用的舊編碼技術(例如使用「for i in range(len(array))」範式在數組上迭代)。
更廣闊的人工智慧圖景
Trask已經完成了一項偉大的工作,它匯集了一本書,既可以為初學者,也可以為有經驗的Python深度學習開發人員填補他們的知識空白。
但正如泰溫·蘭尼斯特(Tywin Lannister)所說(每個工程師都會同意),「每個任務都有一個工具,每個工具都有一個任務。」深度學習並不是一根可以解決所有人工智慧問題的魔杖。事實上,對於許多問題,更簡單的機器學習演算法,如線性回歸和決策樹,將表現得和深度學習一樣好,而對於其他問題,基於規則的技術,如正則表達式和幾個if-else子句,將優於兩者。
關鍵是,你需要一整套工具和技術來解決AI問題。希望Grokking深度學習能夠幫助你開始獲取這些工具。
你要去哪裡?我當然建議選擇一本關於Python深度學習的深度書籍,比如PyTorch的深度學習或Python的深度學習。你還應該加深你對其他機器學習演算法和技術的了解。我最喜歡的兩本書是《動手機器學習》和《Python機器學習》。
你也可以通過瀏覽機器學習和深度學習論壇,如r/MachineLearning和r/deeplearning subreddits,人工智慧和深度學習Facebook組,或通過在Twitter上關注人工智慧研究人員來獲取大量知識。
AI的世界是巨大的,並且在快速擴張,還有很多東西需要學習。如果這是你關於深度學習的第一本書,那麼這是一個神奇旅程的開始。
㈥ 初學者如何學習python如何快速從Python小白到初級Python工程師
制定目標
我的學習歷程:我想免費學習Python,因此我必須養成每天的學習習慣(每天4個小時),甚至要利用我的周末。我的總體規劃是設定目標並追逐目標。我為7個星期設定了7個目標!
第1周
我的第一周目標-(Python基礎知識)作為初學者,我們的第一周目標應該是-熟悉Python基礎知識,例如變數,條件,列表,循環,函數。(好奇並探索您可以使用Python進行的操作)。由於我想免費學習python,所以我開始在互聯網上進行挖掘,幸運的是發現了一個Python備忘單,對我有很大幫助。
第2周
第二周目標-(提高我的編碼能力)解決100多個編碼問題。反向字元串,迴文,GCD,合並排序數組,If-then-else語句,循環,函數和python軟體包問題。「越努力,您就會成為更好的開發者」
第3周
第三周目標-(了解數據結構和演算法),提升您的技能和知識,並學習基礎知識,例如堆棧,隊列,元組,樹,字典,鏈接列表,搜索(線性和二進制搜索),遞歸函數(階乘,斐波那契數列),排序(氣泡排序,選擇排序)和時間復雜度(線性,二次和常數)。
第4周
第四(探索Python庫)Python之所以在開發人員中如此受歡迎,是因為其令人贊嘆的庫可供用戶使用。您可以使用的一些最常見的庫是Numpy,Scipy,Scikit-learn,Theano,TensorFlow,Keras,PyTorch和Pandas。
OpenCV是計算機視覺庫,可為您提供圖像處理功能!很酷吧?
SimpleCV,另一個CV庫,本質上是OpenCV的子集,但學習曲線要低得多。
我發現個驚人的博客約有56個Python庫。
PyGame,一個游戲開發庫,可讓您製作出色的游戲。
第5周
第五周目標-(學習Python框架)您必須學習至少3個流行的框架。閱讀框架文檔,在B站上找到視頻教程。必須以Numpy,Django,pandas和Scrapy開頭。
Django-一個Web應用程序框架。從這里您可以學習Django。
Flask(Python Microframework),另一種流行的Web應用程序框架,更加扎實(因此更加靈活)的Web應用程序開發方法
第6周
第六周目標-(從事Python項目)這是最重要的。在這里,您必須測試並應用您的知識。在第6周,您要做的就是至少處理3個python項目。我知乎分享了我以前的答案,您將在這里獲得一些適合初學者和中級學習者的出色python項目:使用Python構建的一些出色項目?
第7周
第七周目標-(Python面試練習)恭喜!現在,您擁有在全球任何一家技術公司中申請任何軟體工程工作所需的資源。現在,練習您的軟技能,並盡可能練習面試問題。
㈦ python教程免費的學習資料可以上哪找
python教程免費的學習資料可以上【達內教育】官網找。該機構擁有名企總監級講師團隊多年Python實戰經驗,課程由淺入深,循序漸進,學習無壓力。
【python教程】具體內容如下:
1、Python軟體開發基礎:掌握計算機的構成和工作原理、使用Linux常用工具和建立Python開發環境,並使用print輸出等。
2、Python全棧式WEB:獨立完成後端軟體開發,深入理解Python開發後端的精髓、獨立完成前端軟體的開發,並和後端結合,熟練掌握使用Python進行全站WEB開發的技巧。
3、Python多領域開發:使用Python熟練編寫爬蟲軟體、熟練使用Python庫進行數據分析和掌握軟體工程、項目管理、項目文檔、軟體測試調優的基本方法等。感興趣的話點擊此處,免費學習一下
想了解更多有關python的相關信息,推薦咨詢【達內教育】。【達內教育】重磅推出「因材施教、分級培優」創新教學模式,同一課程方向,面向不同受眾群體,提供就業、培優、才高三個級別教學課程,達內「因材施教、分級培優「差異化教學模式,讓每一位來達內學習的學員都能找到適合自己的課程。達內IT培訓機構,試聽名額限時搶購。
㈧ 如何快速學習Python
一、Python是一種計算機程序設計語言。
你可能已經聽說過很多種流行的編程語言,比如非常難學的C語言,非常流行的Java語言,適合初學者的Basic語言,適合網頁編程的JavaScript語言等等。
二、那Python是一種什麼語言?
首先,我們普及一下編程語言的基礎知識。用任何編程語言來開發程序,都是為了讓計算機幹活,比如下載一個MP3,編寫一個文檔等等,而計算機幹活的CPU只認識機器指令,所以,盡管不同的編程語言差異極大,最後都得「翻譯」成CPU可以執行的機器指令。而不同的編程語言,編寫的代碼量,差距也很大。
比如,完成同一個任務,C語言要寫1000行代碼,Java只需要寫100行,而Python可能只要20行。
三、所以Python是一種相當高級的語言。
1、你也許會問,代碼少還不好?代碼少的代價是運行速度慢,C程序運行1秒鍾,Java程序可能需要2秒,而Python程序可能就需要10秒。
2、那是不是越低級的程序越難學,越高級的程序越簡單?表面上來說,是的,但是,在非常高的抽象計算中,高級的Python程序設計也是非常難學的,所以,高級程序語言不等於簡單。
3、但是,對於初學者和完成普通任務,Python語言是非常簡單易用的。連Google都在大規模使用Python,你就不用擔心學了會沒用。
4、用Python可以做什麼?可以做日常任務,比如自動備份你的MP3;可以做網站,很多著名的網站包括YouTube就是Python寫的;可以做網路游戲的後台,很多在線游戲的後台都是Python開發的。總之就是能幹很多很多事啦。
5、Python當然也有不能乾的事情,比如寫操作系統,這個只能用C語言寫;寫手機應用,只能用Swift/Objective-C(針對iPhone)和Java(針對Android);寫3D游戲,最好用C或C++。
四、如果你是小白用戶,滿足以下條件:
會使用電腦,但從來沒寫過程序;
還記得初中數學學的方程式和一點點代數知識;
想從編程小白變成專業的軟體架構師;
每天能抽出半個小時學習,不要再猶豫了,這個教程就是為你准備的!准備好了嗎?
㈨ python好學嗎 知乎
首先,對於初學者來說學習Python是不錯的選擇,一方面Python語言的語法比較簡單易學,另一方面Python的實驗環境也比較容易搭建。
學習編程是一定需要老師的,我不信誰能無師自通把Python學得多好。至少著急就業的人肯定不會,沒人指導很難學成。那麼學習Python編程語言難嗎?其實學Python不難,比起C語言、C#、 C+ +和JAVA這些編程語言相對容易很多。學習Python編程語言,動手實踐是一件非常愉快的事情。
下面給新手學習Python一些建議:
1、先買一本自學用的Python書籍,不要看電子書。
2、對Python基礎數據類型有個了解。
3、學會各種類型的操作方法。
4、了解函數和類的概念。
5、動手實踐,找小項目練習。
如果你決定了要學習Python技術,就是為了以後能有個高薪工作,而且你對自己學習Python還很自信,建議參加專業的學習。因為你對於工作的迫切需求,你肯定不會像大學那樣貪玩不學習,你會極其認真。