當前位置:首頁 » 編程語言 » pythonviterbi

pythonviterbi

發布時間: 2023-06-26 09:29:37

『壹』 jieba分詞詳解

「結巴」分詞是一個python 中文分片語件,參見 https://github.com/fxsjy/jieba
可以對中文文本進行 分詞、詞性標注、關鍵詞抽取 等功能,並且支持自定義詞典。

本文包括以下內容:
1、jieba分詞包的 安裝
2、jieba分詞的 使用教程
3、jieba分詞的 工作原理與工作流程
4、jieba分詞所涉及到的 HMM、TextRank、TF-IDF等演算法介紹

可以直接使用pip來進行安裝:
sudo pip install jieba
或者
sudo pip3 install jieba

關鍵詞抽取有兩種演算法,基於TF-IDF和基於TextRank:

jieba分詞有三種不同的分詞模式: 精確模式、全模式和搜索引擎模式

對應的,函數前加l即是對應得到list結果的函數:

精確模式是最常用的分詞方法,全模式會將句子中所有可能的詞都列舉出來,搜索引擎模式則適用於搜索引擎使用。具體的差別可在下一節工作流程的分析中詳述。

在上述每個函數中,都有名為HMM的參數。這一項表示是否在分詞過程中利用HMM進行新詞發現。關於HMM,本文附錄中將簡述相關知識。

另外分詞支持自定義字典,詞典格式和 dict.txt 一樣,一個詞佔一行;每一行分三部分:詞語、詞頻(可省略)、詞性(可省略),用空格隔開,順序不可顛倒。
具體使用方法為:

關鍵詞抽取的兩個函數的完整參數為:

可以通過

來打開或關閉並行分詞功能。
個人感覺一般用不到,大文件分詞需要手動實現多進程並行,句子分詞也不至於用這個。

jieba分詞主要通過詞典來進行分詞及詞性標注,兩者使用了一個相同的詞典。正因如此,分詞的結果優劣將很大程度上取決於詞典,雖然使用了HMM來進行新詞發現。
jieba分詞包整體的工作流程如下圖所示:

下面將根據源碼詳細地分析各個模塊的工作流程。

在之後幾節中,我們在 藍色的方框 中示範了關鍵步驟的輸出樣例或詞典文件的格式樣例。在本節中都採用類似的表示方式。

jieba分詞中,首先通過對照典生成句子的 有向無環圖 ,再根據選擇的模式不同,根據詞典 尋找最短路徑 後對句子進行截取或直接對句子進行截取。對於未登陸詞(不在詞典中的詞)使用 HMM 進行新詞發現。

詞典的格式應為
word1 freq1 word_type1
word2 freq2 word_type2

其中自定義用戶詞典中詞性word_type可以省略。
詞典在其他模塊的流程中可能也會用到,為方便敘述,後續的流程圖中將會省略詞典的初始化部分。

圖b演示了搜索引擎模式的工作流程,它會在精確模式分詞的基礎上,將長詞再次進行切分。

在這里我們假定讀者已經了解HMM相關知識,如果沒有可先行閱讀下一章內容中的HMM相關部分或者跳過本節。

在jieba分詞中,將字在詞中的位置B、M、E、S作為隱藏狀態,字是觀測狀態,使用了詞典文件分別存儲字之間的表現概率矩陣(finalseg/prob_emit.py)、初始概率向量(finalseg/prob_start.py)和轉移概率矩陣(finalseg/prob_trans.py)。這就是一個標準的 解碼問題 ,根據概率再利用 viterbi演算法 對最大可能的隱藏狀態進行求解。

詞性分析部分與分詞模塊用了同一個基礎的分詞器,對於詞典詞的詞性,將直接從詞典中提取,但是對於新詞,詞性分析部分有一個 專屬的新詞及其詞性的發現模塊
用於詞性標注的HMM模型與用於分詞的HMM模型相似,同樣將文字序列視為可見狀態,但是隱藏狀態不再是單單的詞的位置(B/E/M/S),而變成了詞的位置與詞性的組合,如(B,v)(B,n)(S,n)等等。因此其初始概率向量、轉移概率矩陣和表現概率矩陣和上一節中所用的相比都要龐大的多,但是其本質以及運算步驟都沒有變化。
具體的工作流程如下圖所示。

jieba分詞中有兩種不同的用於關鍵詞抽取的演算法,分別為TextRank和TF-IDF。實現流程比較簡單,其核心在於演算法本身。下面簡單地畫出實現流程,具體的演算法可以參閱下一章內容。

TextRank方法默認篩選詞性,而TF-IDF方法模型不進行詞性篩選。

在本章中,將會簡單介紹相關的演算法知識,主要包括用於新詞發現的 隱馬爾科夫模型 維特比演算法 、用於關鍵詞提取的 TextRank TF-IDF 演算法。

HMM即隱馬爾科夫模型,是一種基於馬爾科夫假設的統計模型。之所以為「隱」,是因為相較於馬爾科夫過程HMM有著未知的參數。在世界上,能看到的往往都是表象,而事物的真正狀態往往都隱含在表象之下,並且與表象有一定的關聯關系。

其中,S、O分別表示狀態序列與觀測序列。

如果讀者還對這部分內容心存疑問,不妨先往下閱讀,下面我們將以一個比較簡單的例子對HMM及解碼演算法進行實際說明與演示,在讀完下一小節之後再回來看這些式子,或許能夠恍然大悟。

下面以一個簡單的例子來進行闡述:
假設小明有一個網友小紅,小紅每天都會在朋友圈說明自己今天做了什麼,並且假設其僅受當天天氣的影響,而當天的天氣也只受前一天天氣的影響。
於小明而言,小紅每天做了什麼是可見狀態,而小紅那裡的天氣如何就是隱藏狀態,這就構成了一個HMM模型。一個HMM模型需要有五個要素:隱藏狀態集、觀測集、轉移概率、觀測概率和初始狀態概率。

即在第j個隱藏狀態時,表現為i表現狀態的概率。式中的n和m表示隱藏狀態集和觀測集中的數量。
本例中在不同的天氣下,小紅要做不同事情的概率也不同, 觀測概率 以表格的形式呈現如下:

其中

除此之外,還需要一個初始狀態概率向量π,它表示了觀測開始時,即t=0時,隱藏狀態的概率值。本例中我們指定 π={0,0,1}

至此,一個完整的 隱馬爾科夫模型 已經定義完畢了。

HMM一般由三類問題:
概率計算問題 ,即給定 A,B,π 和隱藏狀態序列,計算觀測序列的概率;
預測問題 ,也成解碼問題,已知 A,B,π 和觀測序列,求最優可能對應的狀態序列;
學習問題 ,已知觀測序列,估計模型的 A,B,π 參數,使得在該模型下觀測序列的概率最大,即用極大似然估計的方法估計參數。

在jieba分詞中所用的是解碼問題,所以此處對預測問題和學習問題不做深入探討,在下一小節中我們將繼續以本節中的例子為例,對解碼問題進行求解。

在jieba分詞中,採用了HMM進行新詞發現,它將每一個字表示為B/M/E/S分別代表出現在詞頭、詞中、詞尾以及單字成詞。將B/M/E/S作為HMM的隱藏狀態,而連續的各個單字作為觀測狀態,其任務即為利用觀測狀態預測隱藏狀態,並且其模型的 A,B,π 概率已經給出在文件中,所以這是一個標準的解碼問題。在jieba分詞中採用了 Viterbi演算法 來進行求解。

Viterbi演算法的基本思想是: 如果最佳路徑經過一個點,那麼起始點到這個點的路徑一定是最短路徑,否則用起始點到這點更短的一條路徑代替這段,就會得到更短的路徑,這顯然是矛盾的;從起始點到結束點的路徑,必然要經過第n個時刻,假如第n個時刻有k個狀態,那麼最終路徑一定經過起始點到時刻n中k個狀態里最短路徑的點
將時刻t隱藏狀態為i所有可能的狀態轉移路徑i1到i2的狀態最大值記為

下面我們繼續以上一節中的例子來對viterbi演算法進行闡述:
小明不知道小紅是哪裡人,他只能通過小紅每天的活動來推斷那裡的天氣。
假設連續三天,小紅的活動依次為:「睡覺-打游戲-逛街」,我們將據此計算最有可能的天氣情況。

表示第一天為雨天能夠使得第二天為晴天的概率最大(也就是說如果第二天是晴天在最短路徑上的話,第一天是雨天也一定在最短路徑上,參見上文中Viterbi演算法的基本思想)

此時已經到了最後的時刻,我們開始回溯。

其計算過程示意圖如下圖所示。

)的路徑。

TF-IDF(詞頻-逆文本頻率)是一種用以評估字詞在文檔中重要程度的統計方法。它的核心思想是,如果某個詞在一篇文章中出現的頻率即TF高,並且在其他文檔中出現的很少,則認為這個詞有很好的類別區分能力。

其中:

TextRank是一種用以關鍵詞提取的演算法,因為是基於PageRank的,所以先介紹PageRank。
PageRank通過互聯網中的超鏈接關系確定一個網頁的排名,其公式是通過一種投票的思想來設計的:如果我們計算網頁A的PageRank值,那麼我們需要知道哪些網頁鏈接到A,即首先得到A的入鏈,然後通過入鏈給網頁A進行投票來計算A的PR值。其公式為:

其中:

d為阻尼系數,取值范圍為0-1,代表從一定點指向其他任意點的概率,一般取值0.85。
將上式多次迭代即可直到收斂即可得到結果。

TextRank演算法基於PageRank的思想,利用投票機制對文本中重要成分進行排序。如果兩個詞在一個固定大小的窗口內共同出現過,則認為兩個詞之間存在連線。

公式與PageRank的基本相同。多次迭代直至收斂,即可得到結果。
在jieba分詞中,TextRank設定的詞窗口大小為5,將公式1迭代10次的結果作為最終權重的結果,而不一定迭代至收斂。

『貳』 自然語言處理(NLP)的基礎難點:分詞演算法

自然語言處理(NLP,Natural Language Processing)是人工智慧領域中的一個重要方向,主要研究人與計算機之間用自然語言進行有效通信的各種理論和方法。自然語言處理的底層任務由易到難大致可以分為詞法分析、句法分析和語義分析。分詞是詞法分析(還包括詞性標注和命名實體識別)中最基本的任務,也是眾多NLP演算法中必不可少的第一步,其切分准確與否往往與整體結果息息相關。

金融領域分詞的難點

分詞既簡單又復雜。簡單是因為分詞的演算法研究已經很成熟了,大部分的演算法(如HMM分詞、CRF分詞)准確率都可以達到95%以上;復雜則是因為剩下的5%很難有突破,主要可以歸結於三點:

▲粒度,即切分時的最小單位,不同應用對粒度的要求不一樣,比如「融資融券」可以是一個詞也可以是兩個詞

▲歧義,比如「恆生」一詞,既可指恆生公司,又可指恆生指數

▲未登錄詞,即未出現在演算法使用的詞典中的詞,比如不常見的專業金融術語,以及各種上市公司的名稱

在金融領域中,分詞也具有上述三個難點,並且在未登錄詞方面的難點更為突出,這是因為金融類詞彙本來就多,再加上一些專有名詞不僅有全稱還有簡稱,這就進一步增大了難度。

在實際應用中,以上難點時常會造成分詞效果欠佳,進而影響之後的任務。尤其是在一些金融業務中,有許多需要與用戶交互的場景,某些用戶會用口語化的詞彙描述業務,如果分詞錯誤會影響用戶意圖的解析,這對分詞的准確性提出了更高的要求。因此在進行NLP上層應用開發時,需要對分詞演算法有一定的了解,從而在效果優化時有能力對分詞器進行調整。接下來,我們介紹幾種常用的分詞演算法及其應用在金融中的優劣。

幾種常見的分詞演算法

分詞演算法根據其核心思想主要分為兩種:

第一種是基於字典的分詞,先把句子按照字典切分成詞,再尋找詞的最佳組合方式,包括最大匹配分詞演算法、最短路徑分詞演算法、基於N-Gram model的分詞演算法等;

第二種是基於字的分詞,即由字構詞,先把句子分成一個個字,再將字組合成詞,尋找最優的切分策略,同時也可以轉化成序列標注問題,包括生成式模型分詞演算法、判別式模型分詞演算法、神經網路分詞演算法等。

最大匹配分詞尋找最優組合的方式是將匹配到的最長片語合在一起,主要的思路是先將詞典構造成一棵Trie樹(也稱為字典樹),Trie樹由詞的公共前綴構成節點,降低了存儲空間的同時可以提升查找效率。

最大匹配分詞將句子與Trie樹進行匹配,在匹配到根結點時由下一個字重新開始進行查找。比如正向(從左至右)匹配「他說的確實在理」,得出的結果為「他/說/的確/實在/理」。如果進行反向最大匹配,則為「他/說/的/確實/在理」。

這種方式雖然可以在O(n)時間對句子進行分詞,但是只單向匹配太過絕對,尤其是金融這種詞彙較豐富的場景,會出現例如「交易費/用」、「報價單/位」等情況,所以除非某些詞的優先順序很高,否則要盡量避免使用此演算法。

最短路徑分詞演算法首先將一句話中的所有詞匹配出來,構成詞圖(有向無環圖DAG),之後尋找從起始點到終點的最短路徑作為最佳組合方式,例:

我們認為圖中每個詞的權重都是相等的,因此每條邊的權重都為1。

在求解DAG圖的最短路徑問題時,總是要利用到一種性質:即兩點之間的最短路徑也包含了路徑上其他頂點間的最短路徑。比如S->A->B->E為S到E到最短路徑,那S->A->B一定是S到B到最短路徑,否則會存在一點C使得d(S->C->B)<d(S->A->B),那S到E的最短路徑也會變為S->C->B->E,這就與假設矛盾了。利用上述的最優子結構性質,可以利用貪心演算法或動態規劃兩種求解演算法:

(1)基於Dijkstra演算法求解最短路徑,該演算法適用於所有帶權有向圖,求解源節點到其他所有節點的最短路徑,並可以求得全局最優解;

(2)N-最短路徑分詞演算法,該方法是對Dijkstra演算法的擴展,在每一步保存最短的N條路徑,並記錄這些路徑上當前節點的前驅,在最後求得最優解時回溯得到最短路徑。這種方法的准確率優於Dijkstra演算法,但在時間和空間復雜度上都更大。

相較於最大匹配分詞演算法,最短路徑分詞演算法更加靈活,可以更好地把詞典中的片語合起來,能更好地解決有歧義的場景。比如上述「他說的確實在理」這句話,用最短路徑演算法的計算結果為「他/說/的/確實/在理」,避免了正向最大匹配的錯誤。但是對於詞典中未存在的詞基本沒有識別能力,無法解決金融領域分詞中的「未登錄詞」難點。

N-Gram(又稱N元語法模型)是基於一個假設:第n個詞出現與前n-1個詞相關,而與其他任何詞不相關。在此種假設下,可以簡化詞的條件概率,進而求解整個句子出現的概率。

現實中,常用詞的出現頻率或者概率肯定比罕見詞要大。因此,可以將求解詞圖最短路徑的問題轉化為求解最大概率路徑的問題,即分詞結果為「最有可能的詞的組合「。

計算詞出現的概率,僅有詞典是不夠的,還需要充足的語料,所以分詞任務已經從單純的「演算法」上升到了「建模」,即利用統計學方法結合大數據挖掘,對「語言」(句子出現的概率)進行建模。

我們將基於N-gram模型所統計出的概率分布應用到詞圖中,可以得到詞的概率圖。對該詞圖用最短路徑分詞演算法求解最大概率的路徑,即可得到分詞結果。

相較於前兩種分詞演算法,基於N-Gram model的分詞演算法對詞頻進行了統計建模,在切分有歧義的時候力求得到全局最優值,比如在切分方案「證券/自營/業務」和「證券/自/營業/務」中,統計出「證券/自營/業務」出現的概率更大,因此結果有更高的准確率。但也依然無法解決金融場景中未登錄詞的問題。

生成式模型主要有隱馬爾可夫模型(HMM,Hidden Markov Model)、樸素貝葉斯分類等。HMM是常用的分詞模型,基於Python的jieba分詞器和基於Java的HanLP分詞器都使用了HMM。

HMM模型認為在解決序列標注問題時存在兩種序列,一種是觀測序列,即人們顯性觀察到的句子,另一種是隱狀態序列,即觀測序列的標簽。假設觀測序列為X,隱狀態序列是Y,則因果關系為Y->X。因此要得到標注結果Y,必須對X的概率、Y的概率、P(X|Y)進行計算,即建立P(X,Y)的概率分布模型。

HMM演算法可以在一定程度上解決未登錄詞的問題,但生成式模型的准確率往往沒有接下來要談到的判別式模型高。

判別式模型主要有感知機、支持向量機(SVM,Support Vector Machine)、條件隨機場(CRF,Conditional Random Field)、最大熵模型等,其中感知機模型和CRF模型是常用的分詞模型。

(1)平均感知機分詞演算法

感知機是一種簡單的二分類線性模型,通過構造超平面,將特徵空間(輸入空間)中的樣本分為正負兩類。通過組合,感知機也可以處理多分類問題。但由於每次迭代都會更新模型的所有權重,被誤分類的樣本會造成很大影響,因此採用平均的方法,在處理完一部分樣本後對更新的權重進行平均。

(2)CRF分詞演算法

CRF可以看作一個無向圖模型,假設給定的標注序列為Y,觀測序列為X,CRF對條件概率P(Y|X)進行定義,而不是對聯合概率建模。

平均感知機演算法雖然速度快,但仍不夠准確。適合一些對速度要求高、對准確性要求相對不那麼高的場景。CRF分詞演算法可以說是目前最常用的分詞、詞性標注和實體識別演算法,它對未登陸詞也有很好的識別能力,是目前在速度、准確率以及未登錄詞識別上綜合表現最突出的演算法,也是我們目前所採用的解決方案,但速度會比感知機慢一些。

在NLP中,最常用的神經網路為循環神經網路(RNN,Recurrent Neural Network),它在處理變長輸入和序列輸入問題中有著巨大的優勢。LSTM(Long Short-Term Memory,長短期記憶網路)為RNN變種的一種,在一定程度上解決了RNN在訓練過程中梯度消失和梯度爆炸的問題。

目前對於序列標注任務,業內公認效果最好的模型是BiLSTM+CRF。相比於上述其它模型,雙向循環神經網路BiLSTM,可以更好地編碼當前字等上下文信息,並在最終增加CRF層,核心是用Viterbi演算法進行解碼,以得到全局最優解,避免B,S,E這種不可能的標記結果的出現,提高准確率。

神經網路分詞雖然能在准確率、未登錄詞識別上有更好的表現,但RNN無法並行計算,在速度上沒有優勢,所以該演算法通常在演算法研究、句子精確解析等對速度要求不高的場景下使用。

分詞作為NLP底層任務之一,既簡單又重要,很多時候上層演算法的錯誤都是由分詞結果導致的。因此,對於底層實現的演算法工程師,不僅需要深入理解分詞演算法,更需要懂得如何高效地實現和調試。

而對於上層應用的演算法工程師,在實際分詞時,需要根據業務場景有選擇地應用上述演算法,比如在搜索引擎對大規模網頁進行內容解析時,對分詞對速度要求大於精度,而在智能問答中由於句子較短,對分詞的精度要求大於速度。

『叄』 python中怎樣處理漢語的同義詞用結巴分詞

python中文分詞:結巴分詞
中文分詞是中文文本處理的一個基礎性工作,結巴分詞利用進行中文分詞。其基本實現原理有三點:
基於Trie樹結構實現高效的詞圖掃描,生成句子中漢字所有可能成詞情況所構成的有向無環圖(DAG)
採用了動態規劃查找最大概率路徑, 找出基於詞頻的最大切分組合
對於未登錄詞,採用了基於漢字成詞能力的HMM模型,使用了Viterbi演算法
安裝(Linux環境)
下載工具包,解壓後進入目錄下,運行:python setup.py install

模式
默認模式,試圖將句子最精確地切開,適合文本分析
全模式,把句子中所有的可以成詞的詞語都掃描出來,適合搜索引擎

介面
組件只提供jieba.cut 方法用於分詞
cut方法接受兩個輸入參數:
第一個參數為需要分詞的字元串
cut_all參數用來控制分詞模式
待分詞的字元串可以是gbk字元串、utf-8字元串或者unicode
jieba.cut返回的結構是一個可迭代的generator,可以使用for循環來獲得分詞後得到的每一個詞語(unicode),也可以用list(jieba.cut(...))轉化為list

實例

#! -*- coding:utf-8 -*-
import jieba
seg_list = jieba.cut("我來到北京清華大學", cut_all = True)
print "Full Mode:", ' '.join(seg_list)

seg_list = jieba.cut("我來到北京清華大學")
print "Default Mode:", ' '.join(seg_list)

『肆』 在python 環境下,使用結巴分詞,自動導入文本,分詞,提取關鍵詞.腳本 大俠給個

#-*-coding:UTF-8-*-

importjieba

__author__='lpe234'


seg_list=jieba.cut("我來到北京天安門",cut_all=True)
print','.join(seg_list)
...
Loadingmodelfromcache/var/folders/sv//T/jieba.cache
我,來到,北京,天安,天安門
Loadingmodelcost0.433seconds.
.

Processfinishedwithexitcode0

『伍』 怎麼是用python 語言 使用結巴分詞 呢

Python代碼

#encoding=utf-8
importjieba

seg_list=jieba.cut("我來到北京清華大學",cut_all=True)
print"FullMode:","/".join(seg_list)#全模式

seg_list=jieba.cut("我來到北京清華大學",cut_all=False)
print"DefaultMode:","/".join(seg_list)#默認模式

seg_list=jieba.cut("他來到了網易杭研大廈")
print",".join(seg_list)

輸出:

FullMode:我/來/來到/到/北/北京/京/清/清華/清華大學/華/華大/大/大學/學

DefaultMode:我/來到/北京/清華大學

他,來到,了,網易,杭研,大廈(此處,「杭研」並沒有在詞典中,但是也被Viterbi演算法識別出來了)
熱點內容
安卓手機如何打開7x文件 發布:2025-02-12 09:43:02 瀏覽:485
c語言等號 發布:2025-02-12 09:39:02 瀏覽:169
ug編程培訓要多少錢 發布:2025-02-12 09:38:27 瀏覽:620
小黃車的密碼怎麼打開 發布:2025-02-12 09:38:26 瀏覽:70
存儲時4k 發布:2025-02-12 09:33:31 瀏覽:87
stn資料庫 發布:2025-02-12 09:32:31 瀏覽:602
iossocket編程 發布:2025-02-12 09:32:20 瀏覽:899
sql語句相等 發布:2025-02-12 09:32:19 瀏覽:351
278源碼 發布:2025-02-12 09:22:40 瀏覽:248
13人牛牛源碼 發布:2025-02-12 09:22:40 瀏覽:155