當前位置:首頁 » 編程語言 » python多線程伺服器

python多線程伺服器

發布時間: 2023-06-19 06:35:48

A. python多線程有什麼作用

線程在程序中是獨立的、並發的執行流。與分隔的進程相比,進程中線程之間的隔離程度要小,它們共享內存、文件句柄和其他進程應有的狀態。
因為線程的劃分尺度小於進程,使得多線程程序的並發性高。進程在執行過程中擁有獨立的內存單元,而多個線程共享內存,從而極大地提高了程序的運行效率。
線程比進程具有更高的性能,這是由於同一個進程中的線程都有共性多個線程共享同一個進程的虛擬空間。線程共享的環境包括進程代碼段、進程的公有數據等,利用這些共享的數據,線程之間很容易實現通信。
操作系統在創建進程時,必須為該進程分配獨立的內存空間,並分配大量的相關資源,但創建線程則簡單得多。因此,使用多線程來實現並發比使用多進程的性能要高得多。
總結起來,使用多線程編程具有如下幾個優點:

  • 進程之間不能共享內存,但線程之間共享內存非常容易。

  • 操作系統在創建進程時,需要為該進程重新分配系統資源,但創建線程的代價則小得多。因此,使用多線程來實現多任務並發執行比使用多進程的效率高。

  • Python語言內置了多線程功能支持,而不是單純地作為底層操作系統的調度方式,從而簡化了 Python 的多線程編程。

  • 在實際應用中,多線程是非常有用的。比如一個瀏覽器必須能同時下載多張圖片;一個 Web 伺服器必須能同時響應多個用戶請求;圖形用戶界面(GUI)應用也需要啟動單獨的線程,從主機環境中收集用戶界面事件……總之,多線程在實際編程中的應用是非常廣泛的。

B. 為什麼有人說Python的多線程是雞肋

因為 Python 中臭名昭著的 GIL。

那麼 GIL 是什麼?為什麼會有 GIL?多線程真的是雞肋嗎? GIL 可以去掉嗎?帶著這些問題,我們一起往下看,同時需要你有一點點耐心。

多線程是不是雞肋,我們先做個實驗,實驗非常簡單,就是將數字 「1億」 遞減,減到 0 程序就終止,這個任務如果我們使用單線程來執行,完成時間會是多少?使用多線程又會是多少?show me the code

那麼把 GIL 去掉可行嗎?

還真有人這么干多,但是結果令人失望,在1999年Greg Stein 和Mark Hammond 兩位哥們就創建了一個去掉 GIL 的 Python 分支,在所有可變數據結構上把 GIL 替換為更為細粒度的鎖。然而,做過了基準測試之後,去掉GIL的 Python 在單線程條件下執行效率將近慢了2倍。

Python之父表示:基於以上的考慮,去掉GIL沒有太大的價值而不必花太多精力。

C. python 怎麼實現多線程的

線程也就是輕量級的進程,多線程允許一次執行多個線程,Python是多線程語言,它有一個多線程包,GIL也就是全局解釋器鎖,以確保一次執行單個線程,一個線程保存GIL並在將其傳遞給下一個線程之前執行一些操作,也就產生了並行執行的錯覺。

D. Python中的多進程與多線程/分布式該如何使用

Python提供了非常好用的多進程包multiprocessing,你只需要定義一個函數,Python會替你完成其他所有事情。
藉助這個包,可以輕松完成從單進程到並發執行的轉換。
1、新建單一進程
如果我們新建少量進程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用進程池
是的,你沒有看錯,不是線程池。它可以讓你跑滿多核CPU,而且使用方法非常簡單。
注意要用apply_async,如果落下async,就變成阻塞版本了。
processes=4是最多並發進程數量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,並需要關注結果
更多的時候,我們不僅需要多進程執行,還需要關注每個進程的執行結果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根據網友評論中的反饋,在Windows下運行有可能崩潰(開啟了一大堆新窗口、進程),可以通過如下調用來解決:
multiprocessing.freeze_support()1
附錄(自己的腳本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用進程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加線程到線程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #創建多線程任務
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待線程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break

E. Python如何實現並行的多線程

Python中使用線程有兩種方式:函數或者用類來包裝線程對象。函數式:調用thread模塊中的start_new_thread()函數來產生新線程。線程模塊:Python通過兩個標准庫thread和threading提供對線程的支持。

F. python多線程能提高效率嗎

很多爬蟲工作者都遇到過抓取速度非常慢,現在的大多數網站都具備了反爬蟲技術,對IP的訪問頻率限制很嚴格。如果想提升爬蟲的速度,大家可以嘗試以下方法。

一、盡量減少訪問次數。
單次爬蟲任務的大多耗時在網路請求等待響應,所以能減少網路請求就盡量減少請求,這樣既能減少目標網站的壓力,也能減少代理伺服器的壓力,提高工作效率。

二、精簡流程,減少重復。
大部分網站並不是嚴格意義上的樹狀結構,而是多重交叉的網狀結構,所以從多個入口深入的網頁會有很多重復,一般根據URL或者ID進行唯一性判別,爬過的就不需要再爬。一些數據如果可以在一個頁面內獲取到,也可以在多個頁面下獲取到,那就選擇只在一個頁面內獲取。

三、多線程任務。
大量爬蟲是一個IO阻塞的任務,所以採用多線程的並發方式可以有效地提高整體速度。多線程可以更好地提高資源利用率,程序設計也更加堅定,程序響應也更快。

四、分布式任務。
上面三點都做到極致了,但是單機單位時間內能爬取到的網頁數量還不足以達到目標,在指定時間內還不能及時的完成任務,那麼就只能多機器來同時進行爬蟲任務了,這就是分布式爬蟲。

做好以上幾點,基本可以將爬蟲的效率提升大半,另外爬蟲代理ip也是不可缺少的尤其是對於量大的任務,IPIDEA提供全球ip的同時更注重保護數據的安全,也可以減少反爬蟲策略的觸發,一舉多得。

G. python之多線程

進程的概念:以一個整體的形式暴露給操作系統管理,裡麵包含各種資源的調用。 對各種資源管理的集合就可以稱為進程。
線程的概念:是操作系統能夠進行運算調度的最小單位。本質上就是一串指令的集合。

進程和線程的區別:
1、線程共享內存空間,進程有獨立的內存空間。
2、線程啟動速度快,進程啟動速度慢。注意:二者的運行速度是無法比較的。
3、線程是執行的指令集,進程是資源的集合
4、兩個子進程之間數據不共享,完全獨立。同一個進程下的線程共享同一份數據。
5、創建新的線程很簡單,創建新的進程需要對他的父進程進行一次克隆。
6、一個線程可以操作(控制)同一進程里的其他線程,但是進程只能操作子進程
7、同一個進程的線程可以直接交流,兩個進程想要通信,必須通過一個中間代理來實現。
8、對於線程的修改,可能會影響到其他線程的行為。但是對於父進程的修改不會影響到子進程。

第一個程序,使用循環來創建線程,但是這個程序中一共有51個線程,我們創建了50個線程,但是還有一個程序本身的線程,是主線程。這51個線程是並行的。注意:這個程序中是主線程啟動了子線程。

相比上個程序,這個程序多了一步計算時間,但是我們觀察結果會發現,程序顯示的執行時間只有0.007秒,這是因為最後一個print函數它存在於主線程,而整個程序主線程和所有子線程是並行的,那麼可想而知,在子線程還沒有執行完畢的時候print函數就已經執行了,總的來說,這個時間只是執行了一個線程也就是主線程所用的時間。

接下來這個程序,吸取了上面這個程序的缺點,創建了一個列表,把所有的線程實例都存進去,然後使用一個for循環依次對線程實例調用join方法,這樣就可以使得主線程等待所創建的所有子線程執行完畢才能往下走。 注意實驗結果:和兩個線程的結果都是兩秒多一點

注意觀察實驗結果,並沒有執行列印task has done,並且程序執行時間極其短。
這是因為在主線程啟動子線程前把子線程設置為守護線程。
只要主線程執行完畢,不管子線程是否執行完畢,就結束。但是會等待非守護線程執行完畢
主線程退出,守護線程全部強制退出。皇帝死了,僕人也跟著殉葬
應用的場景 : socket-server

注意:gil只是為了減低程序開發復雜度。但是在2.幾的版本上,需要加用戶態的鎖(gil的缺陷)而在3點幾的版本上,加鎖不加鎖都一樣。

下面這個程序是一個典型的生產者消費者模型。
生產者消費者模型是經典的在開發架構中使用的模型
運維中的集群就是生產者消費者模型,生活中很多都是

那麼,多線程的使用場景是什麼?
python中的多線程實質上是對上下文的不斷切換,可以說是假的多線程。而我們知道,io操作不佔用cpu,計算佔用cpu,那麼python的多線程適合io操作密集的任務,比如socket-server,那麼cpu密集型的任務,python怎麼處理?python可以折中的利用計算機的多核:啟動八個進程,每個進程有一個線程。這樣就可以利用多進程解決多核問題。

H. 什麼是線程(多線程),Python多線程的好處

幾乎所有的操作系統都支持同時運行多個任務,一個任務通常就是一個程序,每一個運行中的程序就是一個進程。當一個程序運行時,內部可能包含多個順序執行流,每一個順序執行流就是一個線程。

線程和進程

幾乎所有的操作系統都支持進程的概念,所有運行中的任務通常對應一個進程(Process)。當一個程序進入內存運行時,即變成一個進程。進程是處於運行過程中的程序,並且具有一定的獨立功能。進程是系統進行資源分配和調度的一個獨立單位。

一般而言,進程包含如下三個特徵:

獨立性:進程是系統中獨立存在的實體,它可以擁有自己的獨立的資源,每一個進程都擁有自己的私有的地址空間。在沒有經過進程本身允許的情況下,一個用戶進程不可以直接訪問其他進程的地址空間。

動態性:進程與程序的區別在於,程序只是一個靜態的指令集合,而進程是一個正在系統中活動的指令集合。在進程中加入了時間的概念。進程具有自己的生命周期和各種不同的狀態,在程序中是沒有這些概念的。

並發性:多個進程可以在單個處理器上並發執行,多個進程之間不會互相影響。

並發(Concurrency)和並行(Parallel)是兩個概念,並行指在同一時刻有多條指令在多個處理器上同時執行;並發才旨在同一時刻只能有一條指令執行,但多個進程指令被快速輪換執行,使得在宏觀上具有多個進程同時執行的效果。

大部分操作系統都支持多進程並發執行,現代的操作系統幾乎都支持同時執行多個任務。例如,程序員一邊開著開發工具在寫程序,一邊開著參考手冊備查,同時還使用電腦播放音樂……除此之外,每台電腦運行時還有大量底層的支撐性程序在運行……這些進程看上去像是在同時工作。

但事實的真相是,對於一個 CPU 而言,在某個時間點它只能執行一個程序。也就是說,只能運行一個進程,CPU 不斷地在這些進程之間輪換執行。那麼,為什麼用戶感覺不到任何中斷呢?

這是因為相對人的感覺來說,CPU 的執行速度太快了(如果啟動的程序足夠多,則用戶依然可以感覺到程序的運行速度下降了)。所以,雖然 CPU 在多個進程之間輪換執行,但用戶感覺到好像有多個進程在同時執行。

現代的操作系統都支持多進程的並發執行,但在具體的實現細節上可能因為硬體和操作系統的不同而採用不同的策略。比較常用的策略有:

共用式的多任務操作策略,例如 Windows 3.1 和 Mac OS 9 操作系統採用這種策略;

搶占式的多任務操作策略,其效率更高,目前操作系統大多採用這種策略,例如 Windows NT、Windows 2000 以及 UNIX/Linux 等操作系統。

多線程則擴展了多進程的概念,使得同一個進程可以同時並發處理多個任務。線程(Thread)也被稱作輕量級進程(Lightweight Process),線程是進程的執行單元。就像進程在操作系統中的地位一樣,線程在程序中是獨立的、並發的執行流。

當進程被初始化後,主線程就被創建了。對於絕大多數的應用程序來說,通常僅要求有一個主線程,但也可以在進程內創建多個順序執行流,這些順序執行流就是線程,每一個線程都是獨立的。

線程是進程的組成部分,一個進程可以擁有多個線程,一個線程必須有一個父進程。線程可以擁有自己的堆棧、自己的程序計數器和自己的局部變數,但不擁有系統資源,它與父進程的其他線程共享該進程所擁有的全部資源。因為多個線程共享父進程里的全部資源,因此編程更加方便;但必須更加小心,因為需要確保線程不會妨礙同一進程中的其他線程。

線程可以完成一定的任務,可以與其他線程共享父進程中的共享變數及部分環境,相互之間協同未完成進程所要完成的任務。

線程是獨立運行的,它並不知道進程中是否還有其他線程存在。線程的運行是搶占式的,也就是說,當前運行的線程在任何時候都可能被掛起,以便另外一個線程可以運行。

一個線程可以創建和撤銷另一個線程,同一個進程中的多個線程之間可以並發運行。

從邏輯的角度來看,多線程存在於一個應用程序中,讓一個應用程序可以有多個執行部分同時執行,但操作系統無須將多個線程看作多個獨立的應用,對多線程實現調度和管理,以及資源分配。線程的調度和管理由進程本身負責完成。

簡而言之,一個程序運行後至少有一個進程,在一個進程中可以包含多個線程,但至少要包含一個主線程。

歸納起來可以這樣說,操作系統可以同時執行多個任務,每一個任務就是一個進程,進程可以同時執行多個任務,每一個任務就是一個線程。

多線程的好處

線程在程序中是獨立的、並發的執行流。與分隔的進程相比,進程中線程之間的隔離程度要小,它們共享內存、文件句柄和其他進程應有的狀態

因為線程的劃分尺度小於進程,使得多線程程序的並發性高。進程在執行過程中擁有獨立的內存單元,而多個線程共享內存,從而極大地提高了程序的運行效率。

線程比進程具有更高的性能,這是由於同一個進程中的線程都有共性多個線程共享同一個進程的虛擬空間。線程共享的環境包括進程代碼段、進程的公有數據等,利用這些共享的數據,線程之間很容易實現通信。

操作系統在創建進程時,必須為該進程分配獨立的內存空間,並分配大量的相關資源,但創建線程則簡單得多。因此,使用多線程來實現並發比使用多進程的性能要高得多。

總結起來,使用多線程編程具有如下幾個優點:

進程之間不能共享內存,但線程之間共享內存非常容易。

操作系統在創建進程時,需要為該進程重新分配系統資源,但創建線程的代價則小得多。因此,使用多線程來實現多任務並發執行比使用多進程的效率高。

Python 語言內置了多線程功能支持,而不是單純地作為底層操作系統的調度方式,從而簡化了 Python 的多線程編程。

在實際應用中,多線程是非常有用的。比如一個瀏覽器必須能同時下載多張圖片;一個 Web 伺服器必須能同時響應多個用戶請求;圖形用戶界面(GUI)應用也需要啟動單獨的線程,從主機環境中收集用戶界面事件……總之,多線程在實際編程中的應用是非常廣泛的。

熱點內容
lol一區為什麼伺服器好卡 發布:2025-02-12 09:02:22 瀏覽:629
安卓運營商cm是哪個版本 發布:2025-02-12 09:00:00 瀏覽:515
pythonmd5校驗 發布:2025-02-12 08:51:00 瀏覽:470
編程題解析 發布:2025-02-12 08:40:30 瀏覽:454
bilibi手機緩存目錄在 發布:2025-02-12 08:33:11 瀏覽:458
聽ti密碼是多少 發布:2025-02-12 08:22:15 瀏覽:288
淘寶上傳視頻憑證 發布:2025-02-12 08:06:46 瀏覽:879
java畫 發布:2025-02-12 08:01:00 瀏覽:550
光遇安卓官服是在哪裡下載 發布:2025-02-12 07:47:47 瀏覽:648
安卓手機如何關閉程序打開廣告 發布:2025-02-12 07:31:06 瀏覽:469