爬蟲pythongithub
Ⅰ 從Github上淘來的爬蟲框架
好久好久,沒怎麼寫東西,就把從 GitHub 上淘來的各種各樣語言的爬蟲框架分享給大家。
python 自然不用多說氏李,擁有的爬蟲框架數不勝數。
Java 接觸的不是很多,殲亮遲所以知道的爬蟲框架不多。
node 接觸的更加不多,但是也淘到了不錯的幾個框架。
C# 作為筆者除了 Python 以外比較熟悉的語言了。但是發現其爬蟲框架少的可憐。哎,不禁嘆息。
就這樣吧~ 不知道下鍵鉛回什麼時候寫文章。繼續去看書了!!!再見~~想想,下回寫個什麼東西玩玩呢。
Ⅱ 如何入門 Python 爬蟲
我也正在學,推薦參考書:《Python網路數據採集》
在這之前應該有一定的Python基礎,了解一下網路數據格式
本書內 容 提 要
本書採用簡潔強大的 Python 語言,介紹了網路數據採集,並為採集新式網路中的各種數據類
型提供了全面的指導。第一部分重點介紹網路數據採集的基本原理 :如何用 Python 從網路伺服器請求信息,如何對伺服器的響應進行基本處理,以及如何以自動化手段與網站進行交互。第二部分介紹如何用網路爬蟲測試網站,自動化處理,以及如何通過更多的方式接入網路。
本書適合需要採集 Web 數據的相關軟體開發人員和研究人員閱讀。
Ⅲ 如何入門 Python 爬蟲
「入門」是良好的動機,但是可能作用緩慢。如果你手裡或者腦子里有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢廳好耐慢學習。
另外如果說知識體系裡的每一個知識點是圖里的點,依賴關系是邊的話,那麼這個圖一定不是一個有向無環圖。因為學習A的經驗可以幫助你學習B。因此,你不需要學習怎麼樣「入門」,因為這樣的「入門襪簡」點根本不存在!你需要學習的是怎麼樣做一個比較大的東西,在這個過程中,你會很快地學會需要學會的東西的。當然,你可以爭論說需要先懂python,不然怎麼學會python做爬蟲呢?但是事實上,你完全可以在做這個爬蟲的過程中學習python :D看到前面很多答案都講的「術」——用什麼軟體怎麼爬,那我就講講「道」和「術」吧——爬蟲怎麼工作以及怎麼在python實現。
先長話短說總結一下。你需要學習:
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https: //github.com /nvie/rqrq和Scrapy的結合:darkrho/scrapy-redis · GitHub後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)以下是短話長說。說說當初寫的一個集群爬下整個豆瓣的經驗吧。
1)首先你要明白爬蟲怎樣工作
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用扮春你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?很簡單:
Python
import Queue
initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的urlstore(current_url) #把這個url代表的網頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / www.renminribao .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的urlstore(current_url) #把這個url代表的網頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter。簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了…那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub4)展望及後處理雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛…及時更新(預測這個網頁多久會更新一次)如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,「路漫漫其修遠兮,吾將上下而求索」。
Ⅳ 如何入門 Python 爬蟲
「入門」是良好的動機,但是可能作用緩慢。如果你手裡或者腦子里有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。
另外如果說知識體系裡的每一個知識點是圖里的點,依賴關系是邊的話,那麼這個圖一定不是一個有向無環圖。因為學習A的經驗可以幫助你學習B。因此,你不需要學習怎麼樣「入門」,因為這樣的「入門」點根本不存在!你需要學習的是怎麼樣做一個比較大的東西,在這個過程中,你會很快地學會需要學會的東西的。當然,你可以爭論說需要先懂python,不然怎麼學會python做爬蟲呢?但是事實上,你完全可以在做這個爬蟲的過程中學習python :D看到前面很多答案都講的「術」——用什麼軟體怎麼爬,那我就講講「道」和「術」吧——爬蟲怎麼工作以及怎麼在python實現。
先長話短說總結一下。你需要學習:
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https: //github.com /nvie/rqrq和Scrapy的結合:darkrho/scrapy-redis · GitHub後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)以下是短話長說。說說當初寫的一個集群爬下整個豆瓣的經驗吧。
1)首先你要明白爬蟲怎樣工作
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?很簡單:
Python
import Queue
initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的urlstore(current_url) #把這個url代表的網頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / www.renminribao .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的urlstore(current_url) #把這個url代表的網頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter。簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了…那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub4)展望及後處理雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛…及時更新(預測這個網頁多久會更新一次)如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,「路漫漫其修遠兮,吾將上下而求索」。
Ⅳ 如何使用python爬取知乎數據並做簡單分析
一、使用的技術棧:
爬蟲:python27 +requests+json+bs4+time
分析工具: ELK套件
開發工具:pycharm
數據成果簡單的可視化分析
1.性別分布
0 綠色代表的是男性 ^ . ^
1 代表的是女性
-1 性別不確定
可見知乎的用戶男性頗多。
二、粉絲最多的top30
粉絲最多的前三十名:依次是張佳瑋、李開復、黃繼新等等,去知乎上查這些人,也差不多這個排名,說明爬取的數據具有一定的說服力。
三、寫文章最多的top30
四、爬蟲架構
爬蟲架構圖如下:
說明:
選擇一個活躍的用戶(比如李開復)的url作為入口url.並將已爬取的url存在set中。
抓取內容,並解析該用戶的關注的用戶的列表url,添加這些url到另一個set中,並用已爬取的url作為過濾。
解析該用戶的個人信息,並存取到本地磁碟。
logstash取實時的獲取本地磁碟的用戶數據,並給elsticsearchkibana和elasticsearch配合,將數據轉換成用戶友好的可視化圖形。
五、編碼
爬取一個url:
解析內容:
存本地文件:
代碼說明:
* 需要修改獲取requests請求頭的authorization。
* 需要修改你的文件存儲路徑。
源碼下載:點擊這里,記得star哦!https : // github . com/forezp/ZhihuSpiderMan六、如何獲取authorization
打開chorme,打開https : // www. hu .com/,
登陸,首頁隨便找個用戶,進入他的個人主頁,F12(或滑鼠右鍵,點檢查)七、可改進的地方
可增加線程池,提高爬蟲效率
存儲url的時候我才用的set(),並且採用緩存策略,最多隻存2000個url,防止內存不夠,其實可以存在redis中。
存儲爬取後的用戶我說採取的是本地文件的方式,更好的方式應該是存在mongodb中。
對爬取的用戶應該有一個信息的過濾,比如用戶的粉絲數需要大與100或者參與話題數大於10等才存儲。防止抓取了過多的僵屍用戶。
八、關於ELK套件
關於elk的套件安裝就不討論了,具體見官網就行了。網站:https : // www . elastic . co/另外logstash的配置文件如下:
從爬取的用戶數據可分析的地方很多,比如地域、學歷、年齡等等,我就不一一列舉了。另外,我覺得爬蟲是一件非常有意思的事情,在這個內容消費升級的年代,如何在廣闊的互聯網的數據海洋中挖掘有價值的數據,是一件值得思考和需不斷踐行的事情。
Ⅵ 如何解決Python讀取PDF內容慢的問題
1,引言
晚上翻看《Python網路數據採集》這本書,看到讀取PDF內容的代碼,想起來前幾天集搜客剛剛發布了一個抓取網頁pdf內容的抓取規則
如果PDF文件在你的電腦里,那就把urlopen返回的對象pdfFile替換成普通的open()文件對象。
3,展望
這個實驗只是把pdf轉換成了文本,但是沒有像開頭所說的轉換成html標簽,那麼在Python編程環境下是否有這個能力,留待今後探索。
4,集搜客GooSeeker開源代碼下載源
1.GooSeeker開源Python網路爬蟲GitHub源
5,文檔修改歷史
2016-05-26:V2.0,增補文字說明
2016-05-29:V2.1,增加第六章:源代碼下載源,並更換github源的網址
Ⅶ 如何入門 Python 爬蟲
爬蟲我也是接觸了1個月,從python小白到現在破譯各種反爬蟲機制,我給你說說我的方向:
1、學習使用解析網頁的函數,例如:
importurllib.request
if__name__=='__main__':
url="..."
data=urllib.request.urlopen(url).read()#urllib.request.urlopen(需要解析的網址)
data=data.decode('unicode_escape','ignore')#用unicode_escape方式解碼
print(data)
2、學習正則表達式:
正則表達式的符號意義在下面,而正則表達式是為了篩選出上面data中的信息出來,例如:
def get_all(data):
reg = r'(search.+)(" )(mars_sead=".+title=")(.+)(" data-id=")'
all = re.compile(reg);
alllist = re.findall(all, data)
return alllist
3、將得到的結果壓進數組:
if__name__=='__main__':
info = []
info.append(get_all(data))
4、將數組寫進excel:
import xlsxwriter
if__name__=='__main__':
info = []
info.append(get_all(data))
workbook = xlsxwriter.Workbook('C:\Users\Administrator\Desktop\什麼文件名.xlsx') # 創建一個Excel文件
worksheet = workbook.add_worksheet() # 創建一個工作表對象
for i in range(0,len(info)):
worksheet.write(行, 列, info[i], font)#逐行逐列寫入info[i]
workbook.close()#關閉excel
一個簡單的爬蟲搞定,爬蟲的進階不教了,你還沒接觸過更加看不懂
Ⅷ 如何用python寫爬蟲 知乎
學習
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom Filters by Example
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https://github.com/nvie/rq
rq和Scrapy的結合:darkrho/scrapy-redis · GitHub
後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)
Ⅸ 如何入門 Python 爬蟲
「入門」是良好的動機,但是可能作用緩慢。如果你手裡或者腦子里有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。
另外如果說知識體系裡的每一個知識點是圖里的點,依賴關系是邊的話,那麼這個圖一定不是一個有向無環圖。因為學習A的經驗可以幫助你學習B。因此,你不需要學習怎麼樣「入門」,因為這樣的「入門」點根本不存在!你需要學習的是怎麼樣做一個比較大的東西,在這個過程中,你會很快地學會需要學會的東西的。當然,你可以爭論說需要先懂python,不然怎麼學會python做爬蟲呢?但是事實上,你完全可以在做這個爬蟲的過程中學習python :D
看到前面很多並孝答案都講的「術」——用什麼軟體怎麼爬,那我就講講「道」和「術」吧——爬蟲怎麼工作以及怎麼在python實現。
先長話短說summarize一下:
你需要學習
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom Filters by Example
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https://github.com/nvie/rq
rq和Scrapy的結合:darkrho/scrapy-redis · GitHub
後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)
以下是短話長說:
說說當初寫的一個集群爬下整個豆瓣的經驗吧。
1)首先你要明白爬蟲怎樣工作。
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?
很簡單
import Queue
initial_page = "http://www.renminribao.com"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一絕雹稿下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而肆橘每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...
那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...
及時更新(預測這個網頁多久會更新一次)
如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。
所以,不要問怎麼入門,直接上路就好了:)