applypython
① python apply可以有兩個函數嗎
沒有太理解你說的涼餓函數的意思,在這里我說下這個函數的基本用法
函數格式為:apply(func,*args,**kwargs)
用途:當一個野旅函數的參數存在於一個元組或者一個字典中時,用來間接的調用這個函數,並肩元組或者字典中的參數按照順序傳遞襪脊讓給參數
解析:args是一個包含按照函數所需參數傳遞的位置參數的一個元組,是不是很拗口,意思就是,假如A函數的函數位置為
A(a=1,b=2),那麼這個元組中就必須嚴格按照這個參數的位置順序進行傳遞(a=3,b=4),而不能是(b=4,a=3)這樣的順序
kwargs是一個包含關鍵字參數的字典,而其中args如果不傳遞,kwargs需告局要傳遞,則必須在args的位置留空
apply的返回值就是函數func函數的返回值
② python3.2.2使用apply函數時為什麼報NameError: global name 'apply' is not defined完整代碼如下。
已經不支持了
apply(self.func,self.args)
改為
self.func(*self.args)
③ python中有將兩列數據合並為一列數據的函數么
有, 要用apply函數。一種方式:
def my_test(a, b):
return a + b
df['value'] = df.apply(lambda row: my_test(row['A'], row['B']), axis=1)
apply完了產生一列新的series。注意axis=1 不能漏了 ,表示apply的方向是縱向
④ python語言中apply函數的作用
#!/usr/bin/env python
def add2(x, y):
return x+y
print add2(1,2)
print apply(add2, (1,2))
⑤ 優化Python編程的4個妙招
1. Pandas.apply() – 特徵工程瑰寶
Pandas 庫已經非常優化了,但是大部分人都沒有發揮它的最大作用。想想它一般會用於數據科學項目中的哪些地方。一般首先能想到的就是特徵工程,即用已有特徵創造新特徵。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函數。
在Pandas.apply()中,可以傳遞用戶定義功能並將其應用到Pandas Series的所有數據點中。這個函數是Pandas庫最好的擴展功能之一,它能根據所需條件分隔數據。之後便能將其有效應用到數據處理任務中。
2. Pandas.DataFrame.loc – Python數據操作絕妙技巧
所有和數據處理打交道的數據科學家(差不多所有人了!)都應該學會這個方法。
很多時候,數據科學家需要根據一些條件更新數據集中某列的某些值。Pandas.DataFrame.loc就是此類問題最優的解決方法。
3. Python函數向量化
另一種解決緩慢循環的方法就是將函數向量化。這意味著新建函數會應用於輸入列表,並返回結果數組。在Python中使用向量化能至少迭代兩次,從而加速計算。
事實上,這樣不僅能加速代碼運算,還能讓代碼更加簡潔清晰。
4. Python多重處理
多重處理能使系統同時支持一個以上的處理器。
此處將數據處理分成多個任務,讓它們各自獨立運行。處理龐大的數據集時,即使是apply函數也顯得有些遲緩。
關於優化Python編程的4個妙招,青藤小編就和您分享到這里了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於python編程的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑥ 利用Python進行數據分析(10)-移動窗口函數
Python-for-data-移動窗口函數
本文中介紹的是 ,主要的運算元是:
統計和通過其他移動窗口或者指數衰減而運行的函數,稱之為 移動窗口函數
<style scoped="">.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre></style>
2292 rows × 3 columns
rolling運算元,行咐肆為和resample和groupby類似
rolling可以在S或者DF上通過銷陵一個window進行調用
<style scoped="">.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre></style>
2292 rows × 3 columns
指定一個常數衰減因子為觀測值提供更多的權重。常用指定衰減因子的方法:使用span(跨度)衡斗轎
一些統計運算元,例如相關度和協方差等需要同時操作兩個時間序列。
例如,金融分析中的股票和基準指數的關聯性問題:計算時間序列的百分比變化pct_change()
<style scoped="">.dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre></style>
在rolling及其相關方法上使用apply方法提供了一種在移動窗口中應用自己設計的數組函數的方法。
唯一要求:該函數從每個數組中產生一個單值(縮聚),例如使用rolling()...quantile(q)計算樣本的中位數
⑦ python pandas groupby apply 正則表達式
如果不用groupby
⑧ python的list可以使用類似apply的函數嗎
可以。在apply中運用函數,可以使用python內置函數也可以使用自定義函數。由於Python允許使用變數,因此Python不是純函數式編程語言。
⑨ 怎麼用python進行數據
pandas是本書後續內容的首選庫。pandas可以滿足以下需求:
具備按軸自動或顯式數據對齊功能的數據結構。這可以防止許多由於數據未對齊以及來自不同數據源(索引方式不同)的數據而導致的常見錯誤。.
集成時間序列功能
既能處理時間序列數據也能處理非時間序列數據的數據結構
數學運算和簡約(比如對某個軸求和)可以根據不同的元數據(軸編號)執行
靈活處理缺失數據
合並及其他出現在常見資料庫(例如基於SQL的)中的關系型運算
- #-*- encoding:utf-8 -*-import numpy as npimport osimport pandas as pdfrom pandas import Series,DataFrameimport matplotlib.pyplot as pltimport time#下面看一下cummin函數#注意:這里的cummin函數是截止到目前為止的最小值,而不是加和以後的最小值frame = DataFrame([[1,2,3,4],[5,6,7,8],[-10,11,12,-13]],index = list('abc'),columns = ['one','two','three','four'])print frame.cummin()print frame
- >>>
- one two three four
- a 1 2 3 4
- b 1 2 3 4
- c -10 2 3 -13
- one two three four
- a 1 2 3 4
- b 5 6 7 8
- c -10 11 12 -13
1、pandas數據結構介紹
兩個數據結構:Series和DataFrame。Series是一種類似於以為NumPy數組的對象,它由一組數據(各種NumPy數據類型)和與之相關的一組數據標簽(即索引)組成的。可以用index和values分別規定索引和值。如果不規定索引,會自動創建 0 到 N-1 索引。
相關系數與協方差
有些匯總