python粒子群
scikit-opt調研過很多粒子群演算法包,這個是最好用的了
定義你的目標函數
defdemo_func(x):
x1,x2,x3搏山=x
並磨returnx1**2+(x2-0.05)**2+x3**2
調用演算法進行優化求絕銀斗解
pso=PSO(func=demo_func,dim=3)
fitness=pso.fit()
⑵ Metropolis法和Metropolis-Hastings法有什麼區別嗎各自的優點是什麼呢感謝大神
原文鏈接:http://tecdat.cn/?p=19664
MCMC是從復雜概率模型中采樣的通用技術。
蒙特卡洛
馬爾可夫鏈
Metropolis-Hastings演算法
問題
如果需要計算有復雜後驗pdf p(θ| y)的隨機變數θ的函數f(θ)的平均值或期望值。
最受歡迎的見解
1.用R語言模擬混合制排隊隨機服務排隊系統
2.R語言中使用排隊論預測等待時間
3.R語言中實現馬爾可夫鏈蒙特卡羅MCMC模型
4.R語言中的馬爾科夫機制轉換(Markov regime switching)模型
5.matlab貝葉斯隱馬爾可夫hmm模型
6.用R語言模擬混合制排隊隨機服務排隊系統
7.Python基於粒子群優化的投資組合優化
8.R語言馬爾可夫轉換模型研究交通傷亡人數事故預測
9.用機器學習識別不斷變化的股市狀況——隱馬爾可夫模型的應用
⑶ 學習多目標優化需要掌握哪些python知識
多目標優化
目標優化問題一般地就是指通過一定的優化演算法獲得目標函數的最優化解。當優化的目標函數為一個時稱之為單目標優化(Single-
objective Optimization Problem,
SOP)。當優化的目標函數有兩個或兩個以上時稱為多目標優化(Multi-objective Optimization Problem,
MOP)。不同於單目標優化的解為有限解,多目標優化的解通常是一組均衡解。
多目標優化演算法歸結起來有傳統優化演算法和智能優化演算法兩大類。
1. 傳統優化演算法包括加權法、約束法和線性規劃法等,實質上就是將多目標函數轉化為單目標函數,通過採用單目標優化的方法達到對多目標函數的求解。
2. 智能優化演算法包括進化演算法(Evolutionary Algorithm, 簡稱EA)、粒子群演算法(Particle Swarm Optimization, PSO)等。
Pareto最優解:
若x*∈C*,且在C中不存在比x更優越的解x,則稱x*是多目標最優化模型式的Pareto最優解,又稱為有效解。
一般來說,多目標優化問題並不存在一個最優解,所有可能的解都稱為非劣解,也稱為Pareto解。傳統優化技術一般每次能得到Pareo解集中的一個,而
用智能演算法來求解,可以得到更多的Pareto解,這些解構成了一個最優解集,稱為Pareto最優解。它是由那些任一個目標函數值的提高都必須以犧牲其
他目標函數值為代價的解組成的集合,稱為Pareto最優域,簡稱Pareto集。
Pareto有效(最優)解非劣解集是指由這樣一些解組成的集合:與集合之外的任何解相比它們至少有一個目標函數比集合之外的解好。
求解多目標優化問題最有名的就是NSGA-II了,是多目標遺傳演算法,但其對解的選擇過程可以用在其他優化演算法上,例如粒子群,蜂群等等。這里簡單介紹一下NSGA-II的選擇演算法。主要包含三個部分:
1. 快速非支配排序
要先講一下支配的概念,對於解X1和X2,如果X1對應的所有目標函數都不比X2大(最小問題),且存在一個目標值比X2小,則X2被X1支配。
快速非支配排序是一個循環分級過程:首先找出群體中的非支配解集,記為第一非支配層,irank=1(irank是個體i的非支配值),將其從群體中除去,繼續尋找群體中的非支配解集,然後irank=2。
2. 個體擁擠距離
為了使計算結果在目標空間比較均勻的分布,維持種群多樣性,對每個個體計算擁擠距離,選擇擁擠距離大的個體,擁擠距離的定義為:
L[i]d=L[i]d+(L[i+1]m−L[i−1]m)/(fmaxm−fminm)
L[i+1]m是第i+1個個體的第m目標函數值,fmaxm 和 fminm是集合中第m個目標函數的最大和最小值。
3. 精英策略選擇
精英策略就是保留父代中的優良個體直接進入子代,防止獲得的Pareto最優解丟失。將第t次產生的子代種群和父代種群合並,然後對合並後的新種群進行非支配排序,然後按照非支配順序添加到規模為N的種群中作為新的父代。
⑷ 如何評價國賽和美賽的獲獎難度
數學建模競賽(國賽和美賽)經驗分享
第一次參賽是在大一的暑假參加的國賽,當時和兩個同學剛剛組隊,我們也沒有什麼基礎,結果可想而知:無獎。在經歷了這一次國賽之後,大一時的兩位隊友也無心再參加,所以又重新找了兩位隊友。從此我們隊伍成員便確認了下來。這兩位分別是一名女生負責排版,一名男生負責建模;而我負責寫程序。我們一起准備第二年的國賽,在這期間,我們學校決定自己組織一次建模比賽為國賽做鋪墊。我們為了檢驗自己的學習成果,便參加了。憑借著很好的運氣,我們拿了二等獎的好成績。時間不久,便到了國賽。在國賽期間,我們每天熬夜熬到很晚,有了一點想法之後就開始討論,然後發現行不通,又開始討論,再進行完善……就這么一直反反復復著。直到提交了論文的最後#在找隊友的時候,一定要找靠譜的,自己熟悉的,千萬不要臨時組隊。在准備競賽這段時間,要經常溝通,彼此磨合,培養默契。在參加競賽的時候,不免會討論得過於激烈,千萬不要煩彼此,因為只有交流彼此得思想才會進行碰撞,才有可能找到適合本隊得解題辦法。在分工方面,建議有一個人主要負責建模,一個主要負責編程,一個主要負責寫論文和排版。三個人對建模、編程、排版都要了解,因為不知競賽得的時候會有誰的工作量大一些,另外的人還可以去幫忙。三樣都懂一些也可以更好的交流,更好的完成作品。
在准備建模比賽期間,要先了解常見的模型,比如:層次分析法,微分方程模型,線性規劃、非線性規劃和整數規劃等。如果感覺自己不能完全吃透,可以先進行了解,在實際競賽的過程中會查閱大量的資料,在短時間內去了解一個未知的領域,借鑒經典模型並進行完善,做出適合本問題的模型。下面推薦幾本書:第一本是《數學模型》:
《數學模型》這本書很經典,講了很多的經典模型。
第二本是《matlab在數學建模中的應用》;
第三本書是《數學建模演算法與應用》。
負責編程的人至少要有一門自己擅長的編程語言,如MATLAB,Python等。建模過程中大部分人都是用MATLAB,但是也有不少人使用Python。MATLAB的工具包比較多,使用的人比較多。Python的話是庫比較多。我個人是比較喜歡使用python的,但是Matlab也會一些。在平常的學習中要找到適合本隊的題目,是數據分析題,還是優化的題目等。如果選擇數據分析的話,就要對數據分析比較了解,需要掌握數據如何可視化,選什麼圖,才能更能夠刻畫數據的特點。如果不知道選擇什麼種類的圖,可以參照下面的圖:
還要熟悉數據處理的一些軟體,如Excel,SPSS,python的某些庫等。
當然演算法是少不了的,如果時間緊,可以了解大概,明白演算法的框架,常用演算法有:常用的聚類演算法、遺傳演算法、蟻群演算法、粒子群演算法、元胞自動機等。
排版是很重要的,能夠給人第一印象,好的排版能給人帶來美的享受。 有人使用Word來進行排版,那麼就要學會Mathtype公式編輯器的使用;如果使用Latex進行排版,要好好學習語法,可以找找模板。論文中的流程圖建議使用Visio來畫。在學習排版的過程中,可以先大體看一下往年優秀論文的排版,學習學習。比如西文和數字使用Times New Roman字體會比較好看,又如自己去 探索 正文的行距是多少會感覺比較美觀,三線表的磅數是多少會自己會感覺比較美觀等。
不知道,你所說的賽是什麼比賽,我比較熟悉的是大學生數學建模競賽。在本科期間國賽和美賽都參加了兩次,且獲得了不錯的成績,特別在有了豐富經驗以後,在最後一次美賽中,獲得了最高獎(O獎)。
相比而言,美賽更難,原因如下:
其實這兩個比賽的最大不同就是語言,還有不同就是在於背景不同。
國賽是以國內的實際問題為背景,關於其資料查詢方便,閱讀起來輕鬆快捷,但是問題都是一些新穎問題,沒有現成答案,所以還是有難度。而美賽背景是美國文化,你得先搞清楚背景,然而國外資料也不易找到,並且文獻全是英文,查閱起來不方便,速度遲緩。
另一方面語言不同,對於國賽,只要你弄出來,很快能寫好。但是美賽,你把問題弄明白,還得轉化為地道的英語,這是有技術含量的,這需要能力加時間。
另外,美賽有很多國家參加,而國賽參賽人數比較少,並且很多厲害的大學基本不參加國賽而是參加美賽,所以美賽是參賽人數多,質量高。美賽是四天三夜而國賽是三天兩夜。綜上,美賽更難!
⑸ 如何理解貝葉斯估計
根據貝葉斯公式,進行統計推斷,
在垃圾郵件分類方面應用很廣,方法簡單,具有很好的穩定性和健壯性