當前位置:首頁 » 編程語言 » java消息隊列

java消息隊列

發布時間: 2023-04-14 13:25:06

java 如何 從資料庫批量取數入隊列,再逐條處理。關鍵是消息隊列的實現。謝謝

為什麼要用到消息隊列?
你這個需求貌似只需要隊列這個數據結構就行了
使用JDK中自帶的就行,LinkedList是實現Queue的

Queue queue = new LinkedList();
queue.add(Object )//尾部添加

queue.remove()//頭部取出

你只需要將通過JDBC把資料庫取出的對象用循環依次add到queue, 然後再通過循環依次remove就行了

Ⅱ java中如何保證消息隊列的高可用

通過KeepIived加ⅤIP虛擬IP,實現兩個節點的雙主集則沒運集模式,一個節點掛掉之後,VIP與流量自動轉入另外一個節點;並且會自動在故障之後發送報警郵件孫梁或執行sh腳察世本做Nginx修改刷新conf參數,將當前MQ隊列集群的域名轉發到備用集群的VIP虛擬地址上。

Ⅲ 到底什麼是消息隊列Java中如何實現消息隊列

「消息隊列」是在消息的傳輸過程中保存消息的容器。和我們學過的LinkedHashMap,TreeSet等一樣,都是容器。既然是容器,就有有自己的特性,就像LinkedHashMap是以鍵值對存儲。存取順序不變。而消息隊列,看到隊列就可以知道。這個容器裡面的消息是站好隊的,一般遵從先進先出原則。

java中已經為我們封裝好了很多的消息隊列。在java 1.5版本時推出的java.util.concurrent中有很多現成的隊列供我們使用。特性繁多,種類齊全。是你居家旅遊開發必備QAQ。

下面簡單列舉這個包中的消息隊列

  1. :阻塞隊列 BlockingQueue

  2. 數組阻塞隊列 ArrayBlockingQueue

  3. 延遲隊列 DelayQueue

  4. 鏈阻塞隊列 LinkedBlockingQueue

  5. 具有優先順序的阻塞隊列 PriorityBlockingQueue

  6. 同步隊列 SynchronousQueue

  7. 阻塞雙端隊列 BlockingDeque

  8. 鏈阻塞雙端隊列 LinkedBlockingDeque

    不同的隊列不同的特性決定了隊列使用的時機,感興趣的話你可以詳細了解。具體的使用方式我就不贅述了

Ⅳ 如何用JAVA實現Linux上的消息隊列功能

你好,進入Linux後,點擊[應用程序],選擇[系統設置],再選擇[網路],打開網路設置頁面,點擊[新建],在列表中選擇[xDSL],下一步選擇連接xDSL的網卡(如果你有兩塊網卡的話),再設置名稱,用戶名、密碼信息後,點擊][應用]即設置完畢。點擊[激活]即可連接到互聯網。

Ⅳ java工作流和mq相結合

java工作流和mq相結合可以採用以下3種方式:
1、在工作好或仿流中使用消息隊列:可以使用消息隊列作為工作流中的任務處理引擎,將任務分配到消息隊列中,並通過消息隊列中的消息通知任務執行狀態或結果。
2、在消息隊列中使用工作流:可以使用工作流作為消息隊列中的消息處理引擎,將消息作為工作流中的任務團茄,通過工作流引擎執行任務,並根據任務執行結果發送消息通知。
3、工作流和消息隊列相互協作:可以將工作流和消息隊列結合起來,實現復雜的任務處理和協作場景,例如多個任務之間的依賴關系、任務執行的順序控制、任務執行的並行友纖處理等。

Ⅵ java調用別人的介面很慢怎麼用mq

該情況解決方法如下:
1、創建閉啟消森態御息隊列:使用消息隊列來代替直接調用介面,可以將請求消息發送到消息隊列中,等待接收方處理。
2、讓接收方監聽消息隊列:接收方需要注冊監聽此岩器,以便在消息隊列中有新消息時能夠立即處理。

Ⅶ Java開發中消息隊列和rpc框架都是做什麼的

一,消息隊列服務一般用於設計多系統之間的信息傳輸,一般這種傳輸不需要對方對數據做出回應。它最常見的方式是構建非同步的生產者-消費者模式。我們在系統開發中,有些業務並不需要及時返回結果,我們可以把這些操作放到隊列中,然後另起一個消費者去侍族處理它。比如日誌,資料庫非同步更新。
二,rpc一般是用於伺服器與伺服器進程之間通信,這種通信有請求和應答。它是建立在底層的socket通信之上的。封裝為rpc之後,老蔽弊更加方便建立通信。就像在同一個進程中調用對方的方法一樣。它本地的方法名一般和請求到達的伺服器的方法名一一對應。這樣可以更好的把模塊劃分。所以它是應對分布式而生的。比如一個網站,一開始可能所有的服務在一個進程中,但是隨著業務的增長,一個進程處理不過來,這時並清就需要把業務拆分成多個,分部到不同的機器上去。

Ⅷ 如何用JAVA實現Linux上的消息隊列功能

下面來說說如何用不用消息隊列來進行進程間的通信,消息隊列與命名管道有很多相似之處。有關命名管道的更多內容可以參閱我的另一篇文章:Linux進程間通信——使用命名管道
一、什麼是消息隊列
消息隊列提供了一種從一個進程向另一個進程發送一個數據塊的方法。 每個數據塊都被認為含有一個類型,接收進程可以獨立地接收含有不同森悔橘類型的數據結構。我們可以通過發送消息來避免命名管道的同步和阻塞問題。但是消息隊列與命名管道一樣,每個數據塊都有一個最大長度的限制。
Linux用宏MSGMAX和MSGMNB來限制一條消息的最大長度和一個隊列的最大長度。
二、在Linux中使用消息隊列
Linux提供了一系列消息隊列的函數介面來讓我們方便地使用它來實現進程間的通信。它的用法與其他兩個System V PIC機制,即信號量和共享內存相似。
1、msgget函數
該函數用來創建和訪問一個消息隊列。它的原型為:
int msgget(key_t, key, int msgflg);

與其他的IPC機制一樣,程序必須提供一個鍵來命名某個特定的消息隊列。msgflg是一個許可權標志,表示消息隊列的訪問許可權,它與文件的訪問許可權一樣。msgflg可以與IPC_CREAT做或操作,表示當key所命名的消息隊列不存在時創建一個消息隊列,如果key所命名的消息隊列存在時,IPC_CREAT標志會被忽略,而只返回一個標識符。
它返回一個以key命名的消息隊列的標識符(非零整數),失敗時返回-1.
2、msgsnd函數
該函數用來把消息添加到消息隊列中。它的原型為:
int msgsend(int msgid, const void *msg_ptr, size_t msg_sz, int msgflg);

msgid是由msgget函數返回的消息隊列標識符。
msg_ptr是一個指向准備發送消息的指針,但是消息的數據結構卻有一定的要求,指針msg_ptr所指向的消息結構一定要是以一個長整型成員變數開始的結構體,接收函數將用這個成員來確定消息的類型。所以消息結構要定義成這樣:
struct my_message{
long int message_type;
/* The data you wish to transfer*/
};

msg_sz是msg_ptr指向的消息的長度,注意是消息的長度,而不是整個結構體的長度,也就是說msg_sz是不包括長整型消息類型成員變數的長度。
msgflg用於控制當前消息隊列滿或隊列消息到達系統范圍的限制時將要發生的事情。
如果調用成功,消息數據的一分副本將被放到消息隊列中,並返回0,失敗時返回-1.
3、msgrcv函數
該函數用來從一個消息隊列獲取消息,它的原型為
int msgrcv(int msgid, void *msg_ptr, size_t msg_st, long int msgtype, int msgflg);

msgid, msg_ptr, msg_st的作用也函此團數msgsnd函數的一樣。
msgtype可以實現一種簡單的接收優先順序。如果msgtype為0,就獲取隊列中的第一個消息。如果它的值大於零,將獲取具有相同消息類型的第一個信息。如果它小於零,就獲取類型等於或小於msgtype的絕對值的第一個消息。
msgflg用於控制當隊列中沒有相應類型的消息可以接收時將發生的事情。
調用成功時,該函數返回放到接收緩存區中的位元組數,消息被復制到由msg_ptr指向的用戶分配的緩存區中,然後刪除消息隊列中的對應消息。失敗時返回-1.
4、msgctl函數
該函數用來控制消息隊列,它與共享內存的shmctl函數相似,它的原型為:
int msgctl(int msgid, int command, struct msgid_ds *buf);

command是將要採取的動作,它可以取3個值,
IPC_STAT:把msgid_ds結構中的數據設置為消息隊列的當前關聯值,即用消息隊列的當前關聯前凱值覆蓋msgid_ds的值。
IPC_SET:如果進程有足夠的許可權,就把消息列隊的當前關聯值設置為msgid_ds結構中給出的值

IPC_RMID:刪除消息隊列
buf是指向msgid_ds結構的指針,它指向消息隊列模式和訪問許可權的結構。msgid_ds結構至少包括以下成員:
struct msgid_ds
{
uid_t shm_perm.uid;
uid_t shm_perm.gid;
mode_t shm_perm.mode;
};

成功時返回0,失敗時返回-1.
三、使用消息隊列進行進程間通信
馬不停蹄,介紹完消息隊列的定義和可使用的介面之後,我們來看看它是怎麼讓進程進行通信的。由於可以讓不相關的進程進行行通信,所以我們在這里將會編寫兩個程序,msgreceive和msgsned來表示接收和發送信息。根據正常的情況,我們允許兩個程序都可以創建消息,但只有接收者在接收完最後一個消息之後,它才把它刪除。
接收信息的程序源文件為msgreceive.c的源代碼為:
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/msg.h>

struct msg_st
{
long int msg_type;
char text[BUFSIZ];
};

int main()
{
int running = 1;
int msgid = -1;
struct msg_st data;
long int msgtype = 0; //注意1

//建立消息隊列
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if(msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d\n", errno);
exit(EXIT_FAILURE);
}
//從隊列中獲取消息,直到遇到end消息為止
while(running)
{
if(msgrcv(msgid, (void*)&data, BUFSIZ, msgtype, 0) == -1)
{
fprintf(stderr, "msgrcv failed with errno: %d\n", errno);
exit(EXIT_FAILURE);
}
printf("You wrote: %s\n",data.text);
//遇到end結束
if(strncmp(data.text, "end", 3) == 0)
running = 0;
}
//刪除消息隊列
if(msgctl(msgid, IPC_RMID, 0) == -1)
{
fprintf(stderr, "msgctl(IPC_RMID) failed\n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}

發送信息的程序的源文件msgsend.c的源代碼為:
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/msg.h>
#include <errno.h>

#define MAX_TEXT 512
struct msg_st
{
long int msg_type;
char text[MAX_TEXT];
};

int main()
{
int running = 1;
struct msg_st data;
char buffer[BUFSIZ];
int msgid = -1;

//建立消息隊列
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if(msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d\n", errno);
exit(EXIT_FAILURE);
}

//向消息隊列中寫消息,直到寫入end
while(running)
{
//輸入數據
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
data.msg_type = 1; //注意2
strcpy(data.text, buffer);
//向隊列發送數據
if(msgsnd(msgid, (void*)&data, MAX_TEXT, 0) == -1)
{
fprintf(stderr, "msgsnd failed\n");
exit(EXIT_FAILURE);
}
//輸入end結束輸入
if(strncmp(buffer, "end", 3) == 0)
running = 0;
sleep(1);
}
exit(EXIT_SUCCESS);
}

轉載僅供參考,版權屬於原作者。祝你愉快,滿意請採納哦

Ⅸ 在JAVA中怎麼實現消息隊列

java中的消息隊列
消息隊列是線程間通訊的手段:

importjava.util.*

publicclassMsgQueue{

privateVectorqueue=null;
publicMsgQueue(){
queue=newVector();
}
publicsynchronizedvoidsend(Objecto)
{
queue.addElement(o);
}
publicsynchronizedObjectrecv()
{
if(queue.size()==0)
returnnull;
Objecto=queue.firstElement();
queue.removeElementAt(0);//orqueue[0]=nullcanalsowork
returno;
}
}

因為java中是lockedbyobject的所以添加synchronized就可以用於線程同步鎖定對象
可以作為多線程處理多任務的存放task的隊列。他的client包括封裝好的task類以及thread類

Java的多線程-線程間的通信2009-08-2521:58
1.線程的幾種狀態
線程有四種狀態,任何一個線程肯定處於這四種狀態中的一種:
1)產生(New):線程對象已經產生,但尚未被啟動,所以無法執行。如通過new產生了一個線程對象後沒對它調用start()函數之前。
2)可執行(Runnable):每個支持多線程的系統都有一個排程器,排程器會從線程池中選擇一個線程並啟動它。當一個線程處於可執行狀態時,表示它可能正處於線程池中等待排排程器啟動它;也可能它已正在執行。如執行了一個線程對象的start()方法後,線程就處於可執行狀態,但顯而易見的是此時線程不一定正在執行中。
3)死亡(Dead):當一個線程正常結束,它便處於死亡狀態。如一個線程的run()函數執行完畢後線程就進入死亡狀態。
4)停滯(Blocked):當一個線程處於停滯狀態時,系統排程器就會忽略它,不對它進行排程。當處於停滯狀態的線程重新回到可執行狀態時,它有可能重新執行。如通過對一個線程調用wait()函數後,線程就進入停滯狀態,只有當兩次對該線程調用notify或notifyAll後它才能兩次回到可執行狀態。
2.classThread下的常用函數函數
2.1suspend()、resume()
1)通過suspend()函數,可使線程進入停滯狀態。通過suspend()使線程進入停滯狀態後,除非收到resume()消息,否則該線程不會變回可執行狀態。
2)當調用suspend()函數後,線程不會釋放它的「鎖標志」。
例11:
{
publicstaticintshareVar=0;
publicTestThreadMethod(Stringname){
super(name);
}
publicsynchronizedvoidrun(){
if(shareVar==0){
for(inti=0;i<5;i++){
shareVar++;
if(shareVar==5){
this.suspend();//(1)
}}}
else{
System.out.print(Thread.currentThread().getName());
System.out.println("shareVar="+shareVar);
this.resume();//(2)
}}
}
publicclassTestThread{
publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
TestThreadMethodt2=newTestThreadMethod("t2");
t1.start();//(5)
//t1.start();//(3)
t2.start();//(4)
}}
運行結果為:
t2shareVar=5
i.當代碼(5)的t1所產生的線程運行到代碼(1)處時,該線程進入停滯狀態。然後排程器從線程池中喚起代碼(4)的t2所產生的線程,此時shareVar值不為0,所以執行else中的語句。
ii.也許你會問,那執行代碼(2)後為什麼不會使t1進入可執行狀態呢?正如前面所說,t1和t2是兩個不同對象的線程,而代碼(1)和(2)都只對當前對象進行操作,所以t1所產生的線程執行代碼(1)的結果是對象t1的當前線程進入停滯狀態;而t2所產生的線程執行代碼(2)的結果是把對象t2中的所有處於停滯狀態的線程調回到可執行狀態。
iii.那現在把代碼(4)注釋掉,並去掉代碼(3)的注釋,是不是就能使t1重新回到可執行狀態呢?運行結果是什麼也不輸出。為什麼會這樣呢?也許你會認為,當代碼(5)所產生的線程執行到代碼(1)時,它進入停滯狀態;而代碼(3)所產生的線程和代碼(5)所產生的線程是屬於同一個對象的,那麼就當代碼(3)所產生的線程執行到代碼(2)時,就可使代碼(5)所產生的線程執行回到可執行狀態。但是要清楚,suspend()函數只是讓當前線程進入停滯狀態,但並不釋放當前線程所獲得的「鎖標志」。所以當代碼(5)所產生的線程進入停滯狀態時,代碼(3)所產生的線程仍不能啟動,因為當前對象的「鎖標志」仍被代碼(5)所產生的線程佔有。
#p#2.2sleep()
1)sleep()函數有一個參數,通過參數可使線程在指定的時間內進入停滯狀態,當指定的時間過後,線程則自動進入可執行狀態。
2)當調用sleep()函數後,線程不會釋放它的「鎖標志」。
例12:
{
{
publicstaticintshareVar=0;
publicTestThreadMethod(Stringname){
super(name);
}
publicsynchronizedvoidrun(){
for(inti=0;i<3;i++){
System.out.print(Thread.currentThread().getName());
System.out.println(":"+i);
try{
Thread.sleep(100);//(4)
}
catch(InterruptedExceptione){
System.out.println("Interrupted");
}}}
}
publicclassTestThread{publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
TestThreadMethodt2=newTestThreadMethod("t2");
t1.start();(1)
t1.start();(2)
//t2.start();(3)
}}
運行結果為:
t1:0
t1:1
t1:2
t1:0
t1:1
t1:2
由結果可證明,雖然在run()中執行了sleep(),但是它不會釋放對象的「鎖標志」,所以除非代碼(1)的線程執行完run()函數並釋放對象的「鎖標志」,否則代碼(2)的線程永遠不會執行。
如果把代碼(2)注釋掉,並去掉代碼(3)的注釋,結果將變為:
t1:0
t2:0
t1:1
t2:1
t1:2
t2:2
由於t1和t2是兩個對象的線程,所以當線程t1通過sleep()進入停滯時,排程器會從線程池中調用其它的可執行線程,從而t2線程被啟動。
例13:
{
publicstaticintshareVar=0;
publicTestThreadMethod(Stringname){
super(name);
}
publicsynchronizedvoidrun(){
for(inti=0;i<5;i++){
System.out.print(Thread.currentThread().getName());
System.out.println(":"+i);
try{
if(Thread.currentThread().getName().equals("t1"))
Thread.sleep(200);
else
Thread.sleep(100);
}
catch(InterruptedExceptione){
System.out.println("Interrupted");
}}
}}
publicclassTestThread{publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
TestThreadMethodt2=newTestThreadMethod("t2");
t1.start();
//t1.start();
t2.start();
}}
運行結果為:
t1:0
t2:0
t2:1
t1:1
t2:2
t2:3
t1:2
t2:4
t1:3
t1:4
由於線程t1調用了sleep(200),而線程t2調用了sleep(100),所以線程t2處於停滯狀態的時間是線程t1的一半,從從結果反映出來的就是線程t2列印兩倍次線程t1才列印一次。
#p#2.3yield()
1)通過yield()函數,可使線程進入可執行狀態,排程器從可執行狀態的線程中重新進行排程。所以調用了yield()的函數也有可能馬上被執行。
2)當調用yield()函數後,線程不會釋放它的「鎖標志」。
例14:
{
publicstaticintshareVar=0;
publicTestThreadMethod(Stringname){super(name);
}
publicsynchronizedvoidrun(){for(inti=0;i<4;i++){
System.out.print(Thread.currentThread().getName());
System.out.println(":"+i);
Thread.yield();
}}
}
publicclassTestThread{publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
TestThreadMethodt2=newTestThreadMethod("t2");
t1.start();
t1.start();//(1)
//t2.start();(2)
}
}
運行結果為:
t1:0
t1:1
t1:2
t1:3
t1:0
t1:1
t1:2
t1:3
從結果可知調用yield()時並不會釋放對象的「鎖標志」。
如果把代碼(1)注釋掉,並去掉代碼(2)的注釋,結果為:
t1:0
t1:1
t2:0
t1:2
t2:1
t1:3
t2:2
t2:3
從結果可知,雖然t1線程調用了yield(),但它馬上又被執行了。
2.4sleep()和yield()的區別
1)sleep()使當前線程進入停滯狀態,所以執行sleep()的線程在指定的時間內肯定不會執行;yield()只是使當前線程重新回到可執行狀態,所以執行yield()的線程有可能在進入到可執行狀態後馬上又被執行。
2)sleep()可使優先順序低的線程得到執行的機會,當然也可以讓同優先順序和高優先順序的線程有執行的機會;yield()只能使同優先順序的線程有執行的機會。
例15:
{
publicstaticintshareVar=0;
publicTestThreadMethod(Stringname){
super(name);
}
publicvoidrun(){
for(inti=0;i<4;i++){
System.out.print(Thread.currentThread().getName());
System.out.println(":"+i);
//Thread.yield();(1)
/*(2)*/
try{
Thread.sleep(3000);
}
catch(InterruptedExceptione){
System.out.println("Interrupted");
}}}
}
publicclassTestThread{
publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
TestThreadMethodt2=newTestThreadMethod("t2");
t1.setPriority(Thread.MAX_PRIORITY);
t2.setPriority(Thread.MIN_PRIORITY);
t1.start();
t2.start();
}
}
運行結果為:
t1:0
t1:1
t2:0
t1:2
t2:1
t1:3
t2:2
t2:3
由結果可見,通過sleep()可使優先順序較低的線程有執行的機會。注釋掉代碼(2),並去掉代碼(1)的注釋,結果為:
t1:0
t1:1
t1:2
t1:3
t2:0
t2:1
t2:2
t2:3
可見,調用yield(),不同優先順序的線程永遠不會得到執行機會。
2.5join()
使調用join()的線程執行完畢後才能執行其它線程,在一定意義上,它可以實現同步的功能。
例16:
{
publicstaticintshareVar=0;
publicTestThreadMethod(Stringname){
super(name);
}
publicvoidrun(){
for(inti=0;i<4;i++){
System.out.println(""+i);
try{
Thread.sleep(3000);
}
catch(InterruptedExceptione){
System.out.println("Interrupted");
}
}
}
}
publicclassTestThread{
publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
t1.start();
try{
t1.join();
}
catch(InterruptedExceptione){}
t1.start();
}
}
運行結果為:
0
1
2
3
0
1
2
3
#p#3.classObject下常用的線程函數
wait()、notify()和notifyAll()這三個函數由java.lang.Object類提供,用於協調多個線程對共享數據的存取。
3.1wait()、notify()和notifyAll()
1)wait()函數有兩種形式:第一種形式接受一個毫秒值,用於在指定時間長度內暫停線程,使線程進入停滯狀態。第二種形式為不帶參數,代表waite()在notify()或notifyAll()之前會持續停滯。
2)當對一個對象執行notify()時,會從線程等待池中移走該任意一個線程,並把它放到鎖標志等待池中;當對一個對象執行notifyAll()時,會從線程等待池中移走所有該對象的所有線程,並把它們放到鎖標志等待池中。
3)當調用wait()後,線程會釋放掉它所佔有的「鎖標志」,從而使線程所在對象中的其它synchronized數據可被別的線程使用。
例17:
下面,我們將對例11中的例子進行修改
{
publicstaticintshareVar=0;
publicTestThreadMethod(Stringname){
super(name);
}
publicsynchronizedvoidrun(){
if(shareVar==0){
for(inti=0;i<10;i++){
shareVar++;
if(shareVar==5){
try{
this.wait();//(4)
}
catch(InterruptedExceptione){}
}
}
}
if(shareVar!=0){
System.out.print(Thread.currentThread().getName());
System.out.println("shareVar="+shareVar);
this.notify();//(5)
}
}
}
publicclassTestThread{
publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
TestThreadMethodt2=newTestThreadMethod("t2");
t1.start();//(1)
//t1.start();(2)
t2.start();//(3)
}}
運行結果為:
t2shareVar=5
因為t1和t2是兩個不同對象,所以線程t2調用代碼(5)不能喚起線程t1。如果去掉代碼(2)的注釋,並注釋掉代碼(3),結果為:
t1shareVar=5
t1shareVar=10
這是因為,當代碼(1)的線程執行到代碼(4)時,它進入停滯狀態,並釋放對象的鎖狀態。接著,代碼(2)的線程執行run(),由於此時shareVar值為5,所以執行列印語句並調用代碼(5)使代碼(1)的線程進入可執行狀態,然後代碼(2)的線程結束。當代碼(1)的線程重新執行後,它接著執行for()循環一直到shareVar=10,然後列印shareVar。
#p#3.2wait()、notify()和synchronized
waite()和notify()因為會對對象的「鎖標志」進行操作,所以它們必須在synchronized函數或synchronizedblock中進行調用。如果在non-synchronized函數或non-synchronizedblock中進行調用,雖然能編譯通過,但在運行時會發生IllegalMonitorStateException的異常。
例18:
{
publicintshareVar=0;
publicTestThreadMethod(Stringname){
super(name);
newNotifier(this);
}
publicsynchronizedvoidrun(){
if(shareVar==0){
for(inti=0;i<5;i++){
shareVar++;
System.out.println("i="+shareVar);
try{
System.out.println("wait......");
this.wait();
}
catch(InterruptedExceptione){}
}}
}
}
classNotifierextendsThread{
privateTestThreadMethodttm;
Notifier(TestThreadMethodt){
ttm=t;
start();
}
publicvoidrun(){
while(true){
try{
sleep(2000);
}
catch(InterruptedExceptione){}
/*1要同步的不是當前對象的做法*/
synchronized(ttm){
System.out.println("notify......");
ttm.notify();
}}
}
}
publicclassTestThread{
publicstaticvoidmain(String[]args){
TestThreadMethodt1=newTestThreadMethod("t1");
t1.start();
}
}
運行結果為:
i=1
wait......
notify......
i=2
wait......
notify......
i=3
wait......
notify......
i=4
wait......
notify......
i=5
wait......
notify......
4.wait()、notify()、notifyAll()和suspend()、resume()、sleep()的討論
4.1這兩組函數的區別
1)wait()使當前線程進入停滯狀態時,還會釋放當前線程所佔有的「鎖標志」,從而使線程對象中的synchronized資源可被對象中別的線程使用;而suspend()和sleep()使當前線程進入停滯狀態時不會釋放當前線程所佔有的「鎖標志」。
2)前一組函數必須在synchronized函數或synchronizedblock中調用,否則在運行時會產生錯誤;而後一組函數可以non-synchronized函數和synchronizedblock中調用。
4.2這兩組函數的取捨
Java2已不建議使用後一組函數。因為在調用suspend()時不會釋放當前線程所取得的「鎖標志」,這樣很容易造成「死鎖」。

熱點內容
阿里雲啟動伺服器 發布:2024-11-02 04:31:51 瀏覽:109
數控編譯錯誤802怎麼解決 發布:2024-11-02 04:31:42 瀏覽:319
linux如何安裝驅動 發布:2024-11-02 04:30:18 瀏覽:490
雲伺服器項目實施方案 發布:2024-11-02 04:26:00 瀏覽:245
寫入存儲 發布:2024-11-02 04:20:21 瀏覽:30
JavaString替換 發布:2024-11-02 04:14:29 瀏覽:559
百度查詢腳本 發布:2024-11-02 04:14:22 瀏覽:98
陰陽師ios如何登錄安卓 發布:2024-11-02 04:03:03 瀏覽:708
伺服器公網ip地址可以改嗎 發布:2024-11-02 04:01:32 瀏覽:960
大內網沒上傳 發布:2024-11-02 04:00:52 瀏覽:912